Именно исследование второй – синтетической фазы фотосинтеза, позволяет выявить неорганический фактор, лимитирующий его скорость. Им является величина диссоциации углекислого газа в воде: Все биохимические процессы синтеза и обмена веществ в клетке происходят в водных растворах. Элементы и соединения, в том числе и активный углерод углекислоты, усваиваются клеточными органоидами только в диссоциированном на ионы виде. Поэтому от степени диссоциации СО2 в воде напрямую зависит и скорость вступления углерода углекислоты в ключевую, мгновенную синтетическую реакцию его биофиксации с пятиуглеродным сахаром в цикле Кальвина. Это самое узкое место всего процесса фотосинтеза, которое невозможно расширить физико-химическими способами, доступными естественной эволюции растительных форм жизни. Вот некоторые из опробованных растениями методов повышения концентрации диссоциированных ионов углекислоты в своих внутриклеточных водных растворах: Стадия фиксации углерода в строме хлоропласта чувствительна к повышению температуры. С увеличением температуры повышается скорость оборота цикла Кальвина, что могло бы, в принципе, увеличить продуктивность фотосинтетического процесса растений, живущих в жарком, тропическом климате. Но из вышеприведённой таблицы видно, что с увеличением температуры с 20 до 50оС в 2,4 раза падает растворимость углекислоты в воде, что сводит на нет весь возможный положительный эффект термоускорения С3-цикла. Более того, сахарному тростнику и колючим кустарникам в Долине Смерти (шт. Калифорния) пришлось даже вырабатывать специальный защитный С4-цикл фиксации углерода, позволивший им выжить в условиях резкого понижения концентрации СО2 в перегретых внутриклеточных растворах. Углекислота намного лучше растворяется в концентрированных солевых растворах (например, карбонатов) или в органических растворителях (спирте, метаноле, ацетоне). Однако для клеток эти среды являются смертельно токсичными. Растворимость СО2 в воде может быть увеличена повышением давления. Но реально давление внутриклеточной жидкости может быть повышено в несколько раз только перемещением растений в глубины морей и океанов, где фотосинтез невозможен из-за отсутствия света. Недостаточную растворимость углекислоты в воде можно компенсировать ускорением процессов механической циркуляции внутриклеточных растворов. Однако растения, в ходе эволюции, уже полностью исчерпали этот небольшой резерв производительности, на 100% задействовав все физико-химические возможности капиллярно-осмотических эффектов транспортировки потоков и пропускной способности внутриклеточных мембран. Можно продолжить этот перечень «неудач» природной эволюции, но и так уже ясно, что повысить скорость диссоциации углекислоты и, соответственно, скорость всего фотосинтетического процесса можно только искусственно оснастив растительные клетки физико-химическими «орудиями», которые не смогут сами сформироваться в естественной природе без помощи сознательного управления человеком биохимическими процессами растительных форм жизни. Рассматриваемый нами процесс диссоциации и активизации углекислоты в воде состоит из следующих основных стадий: 1 стадия: насыщение воды газообразной углекислотой, поступающей из атмосферы, с последующей диссоциацией молекул образовавшейся угольной кислоты на электролитически активные ионы: Н2О + СО2 Н2СО3 Н+ + НСО3 - 2Н+ + СО3-2 2 стадия: образование фотосинтетически активных анион-радикалов углекислоты, вступающих далее в биохимические реакции цикла Кальвина: Н *+ + НСО3- Н2О + СО2*- 2Н *+ + СО3-2 Н2О + СО2 *- h, ? (образование протон-радикалов идёт по реакции: Н+ Н *+)
|