Эти три разновидности коррозии из года в год подтачивают практически все металлические элементы и узлы установки. Из-за чего детектор не может долго работать в автономном режиме — каждый год приходится поднимать составные части конструкции из-под воды и что-то менять. И так практически все железо по кругу. И было бы еще полбеды, если бы только теряли железо. Но такое «техобслуживание» приходится проводить самим ученым — кандидатам и докторам наук. А ведь нейтринный детектор не маленький прибор на лабораторном столе. Подъем элементов конструкции с глубин Байкала, их разборка и ремонт на открытом льду в условиях сибирской зимы поглощают не только деньги, но и время, и людские силы — самый ценный ресурс проекта, которого остро не хватает на другие, более важные задачи.
Чаще всего из-за коррозии выходят из строя бронированные кабели-тросы — и те, что внутри «зонтика» служат для передачи электросигналов и выполняют грузонесущие функции, и те, по которым с берега подается электропитание для аппаратуры детектора. Последние, подточенные коррозией, порой лопаются прямо на глазах у ученых, когда они начинают поднимать части конструкции из воды. «В прошлом году семижильный кабель электропитания проржавел на глубине двести метров и оборвался. Из-за этого два стринга с фотоэлектронными умножителями остались без питания, и до нынешней экспедиции установка полгода работала не на полную мощность, — рассказывает Григорий Домогацкий. — Обидно, что от коррозии страдает участок длиной всего около ста метров вблизи установки, где много стекающих с аппаратуры токов. Но приходится оставлять на дне Байкала все шесть с лишним километров кабеля и прокладывать новую кабельную линию. А это дело трудоемкое и опасное».
На этом теоретическая часть о нюансах эксплуатации подводной установки закончена. Решено, что новое средство будем пробовать именно на броне кабелей. Александр Макаров, разработчик инновации, грузит ящик с опытной партией баллончиков в «уазик» руководителя проекта, у которого над колесами кружева выеденного ржавчиной железа, и мы снова трясемся на сугробах и выбоинах льдин. На этот раз наш путь лежит в ледовый лагерь, что в четырех с лишним километрах от берега.
Осколок научной школы
На привезенные с берега оранжевые баллончики с игривым названием «Рохер» физики-теоретики из Москвы, Санкт-Петербурга, Дубны и Иркутска — команда Байкальского проекта — поначалу смотрят с улыбкой. Но разговор по делу ставит все на свои места.
— Нужно, чтобы ваш препарат не только обволакивал проволоки оплетки кабеля, но и затекал между витками. Какая у него текучесть? — спрашивает Макарова Игорь Белолаптиков, научный сотрудник Объединенного института ядерных исследований (ОИЯИ, г. Дубна).
— Сам состав жидкий. Он распыляется из баллончика и легко затекает даже в маленькие щели. А минут через пятнадцать образуется пленка.
— А какая у пленки механическая прочность? Кабель иногда приходится перегибать и растягивать.
— Если протягивать кабель через шкив лебедки, то пленка, конечно, не выдержит. А вообще она достаточно эластична — выдерживает растяжение на 10 процентов и изгиб на угол до 90 градусов.
— Отлично. То, что надо. А при каких температурах работает ваш препарат?
— От минус 60 до плюс 250 градусов. В этом же диапазоне температур можно вести и сам процесс обработки металла.
— Даже так?! Здорово! — удовлетворенно кивает головой Белолаптиков. «Здорово» означает, что составом можно будет спокойно пользоваться посреди байкальской зимы, где иногда может стукнуть и минус 40.
Однако самый важный вопрос для команды физиков-практиков, которые своими руками собрали и уже несколько раз перебрали на морозе и ветру подводную установку: каковы требования к подготовке обрабатываемого металла? Как правило, подобные средства требуют идеально чистой и сухой поверхности. А сушить поднятые из-под воды конструкции на открытом льду среди зимы — занятие абсурдное.