Эти данные заставили отвести какую-то роль в антидетонационном эффекте и органической части присадок. Однако на первых порах исследований, этой части приписывали лишь вспомогательную роль, поскольку эффективность соединений, образующих при разложении одинаковые органические радикалы и разные металлы, резко различалась. Считалось, что органическая часть должна быть такой, чтобы соединение в целом распадалось в камере сгорания в нужный момент времени и отвечало всем другим требованиям, предъявляемым к присадкам. Вспомогательная роль органической части антидетонатора находилась в соответствии и с первоначальными представлениями о механизме действия антидетонационных присадок в свете перекисной теории детонации. При высоких температурах в камере сгорания антидетонаторы, в том числе и тетраэтилсвинец, полностью разлагаются. При разложении ТЭС образуются свинец и этильный радикал: Pb (С2Н5) 4 → Pb+ 4С2Н5* Образующийся свинец окисляется с образованием двуокиси свинца Pb+ O2 → PbO2 которая вступает в реакцию с перекисями, разрушая их: R — СН2 — ООН+ РЬО2→ R — СОН+ ЗPbO+ Н2О+ 1/2O2 При этом образуются малоактивные продукты окисления углеводородов и окись свинца. Окись свинца, взаимодействуя с кислородом воздуха, снова окисляется в двуокись свинца, способную реагировать с новой перекисной молекулой. Таким образом, один атом свинца, восстанавливаясь и окисляясь, способен разрушить большое количество перекисных молекул. Каждая разрушенная перекисная молекула, согласно цепной теории, могла быть началом самостоятельной цепи образования новых перекисей. Этим объясняется высокая эффективность малых количеств антидетонаторов. Наиболее полное объяснение антидетонационного действия присадок базируется на представлениях о детонации, как о многостадийном воспламенении части рабочей смеси. Работами А. С. Соколика и С. А. Янтовского впервые была установлена принципиальная разница в действии ТЭС на задержку появления холодного пламени и задержку в развитии холоднопламенных процессов, ведущих к горячему взрыву. Показано, что введение ТЭС в углеводородо-воздушную смесь резко ослабляет интенсивность первичного холодного пламени (что фиксируется по свечению и приросту давления), удлиняет задержку вторичного пламени и, наконец, затрудняет последующий взрыв, делая его возможным лишь при более высоких давлениях. Исследования подтверждают основные положения многостадийного действия антидетонационных присадок. Так, Пастель показал, что введение ТЭС или увеличение его концентрации незначительно влияет на начало появления холодного пламени и делает возможным последующий взрыв при значительно более высоких давлениях; таким образом, температурные пределы холодно-пламенных реакций расширяются. Старгис отмечает, что присутствие ТЭС мало влияет на образование перекисных соединений и реакции окисления углеводородов в начальной стадии и вызывает разрушение перекисей, ведущих к горячему взрыву. Воздействие металла антидетонатора на многостадийный процесс вероятнее всего сосредоточено не на первой, а на последующих стадиях, в которых наличие распыленного металла в объеме может дезактивировать активные частицы, образующиеся при взрывном распаде перекисей Органические радикалы, появляющиеся при распаде металлорганического антидетонатора в камере сгорания, облегчают распад перекисей, идущий по цепному механизму, снижают критическую концентрацию для взрывного распада, тем самым уменьшая интенсивность первичного холодного пламени. А это предопределяет торможение дальнейшего развития многостадийного воспламенения. Однако действие свободных радикалов нельзя сводить просто к общему торможению предпламенного процесса; они затрудняют развитие именно низкотемпературного многостадийного процесса, в то же время, облегчая развитие окислительных реакций, свойственных высокотемпературному одностадийному воспламенению. Именно этим обстоятельством А.С.Соколик объясняет снижение антидетонационного эффекта при увеличении содержания антидетонатора в топливе и даже обращение этого эффекта, когда при очень высоких концентрациях тетраэтилсвинца последний начинает действовать как продетонатор. В этом случае, вероятно, имеет место объемное одностадийное воспламенение благодаря резкому снижению энергии активации в результате ввода в газ большого количества активных начальных центров. Таким образом, теория о многостадийном действии антидетонационных присадок отводит важную роль, как металлу, так и органическому радикалу, что согласуется с большим экспериментальным материалом. Последующие работы А.Н. Воинова и ряда других исследователей показали, что не все антидетонаторы имеют единый механизм действия. Было обнаружено наличие, по крайней мере, двух групп антидетонаторов, отличающихся по механизму действия. Одна группа (включающая ТЭС, ферроцен, циклопентадиенилтрикарбонилмарганец) действует подобно ТЭС на пределы холоднопламенного и горячего взрыва, а другая, в которую входят ароматические амины, карбонилы железа, марганца и никеля, влияет, главным образом, на температурные пределы холодного пламени и в меньшей степени на границы горячего взрыва. Действие второй группы антидетонаторов должно проявляться до появления холодного пламени. Существуют антидетонаторы (внутрикомплексные соединения меди), имеющие промежуточный механизм действия. В исследованиях А.Н. Воинова обнаружен различный механизм действия антидетонационных присадок, содержащих один и тот же металл. Это обстоятельство еще раз свидетельствует об активной роли органической части антидетонатора. Таким образом, механизм действия антидетонационных присадок требует дальнейшего изучения, что позволит повысить эффективность использования существующих и найти новые антидетонаторы. Следует иметь в виду, что антидетонаторы широко применяются во всех странах мира и прочно занимают первое место по объему промышленного производства среди всех присадок к бензинам. C текущей ситуацией и прогнозом развития российского рынка бензина можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок автомобильных бензинов в России». www.newchemistry.ru |