В рыночной экономике применение цемента на любых видах работ, в том числе и в качестве минерального порошка в асфальтобетонных смесях, диктуется получением максимально возможного дохода-прибыли. Однако, применение цемента в качестве минерального порошка в асфальтобетонных смесях сдерживается из-за отсутствия нормативных документов. Действующие нормативные документы, регламентирующие качество минерального порошка ГОСТ Р 52129-2003 {1}, качество асфальтобетонных смесей и асфальтобетоннов ГОСТ 9128-97 {4} не содержат сведений о возможности применении цемента в качестве минерального порошка. Портландцемент и шлакопортландцемент общестраительного назначения изготовляют на основе портландцементного клинкера в соответствии с требованиями ГОСТ 101178-85{4}. По вещественному составу цемент подразделяют на портландцемент (без минеральных добавок), портландцемент с минеральными добавками ( с активными минеральными добавками не более 20%), шлакопртландцемнт ( с добавками гранулированного шлака более 20 %). По прочности при сжатии в 28 суточном возрасте цемент подразделяют на марки: портландцемент 400, 500, 550 и 600; шлакопортландцемент 300, 400 и 600. Для приготовления асфальтобетонных смесей могут быть использованы в качестве минерального порошка цементы с наименьшей активностью, (портландцемент марки не выше 400, шлакортландцемнт марок 300, 400). Особенности применения цемента в качестве минерального порошка заключается в его минеральном составе, значительно отличающегося от минерального состава порошков из карбонатных горных пород. Минеральный порошок марки МП-1состоит в основном из минералов СаСО3, не вступающих в реакции гидролиза и гидротации . Образование цементного клинкера происходит в зоне спекания вращающихся печей в интервале температур 1100-1500 градусов. В результате взаимодействия СаО свободных окислов и получение соединений силикатов алюминатов, ферритов кальция с образованием жидкой фазы до 15-30% и главнейших соединений в такой последовательности: 2СаОSiO2 (двухкальцевый силикат С2S), 3СаОAl2O3 (трехкальцевый алюминат С3А), 4СаОAl2OFe2O3 (четырехкальцеевый алюмоферрит C4AF) и 3CaOSiO2 (трехкальцевый силикат С3S). В конечном продукте может содержаться небольшое количество (до 1,5%) избыточной свободной CaO или MgO. В портландцементе содержание клинкерных минералов бывает: трехкальциевого силиката (C3S) 37-60%, двухкальциевого силикаита (C2S) 15-37%, трехкальциевого алюмината (C3A) 7-15% и четырехкальциевого алюмоферрита (C4AF) 10-18%. Для замедления реакции схватывания цементного теста в результате образования гидросульфоалюмината кальция в цементный клинкер при помоле вводят до 3 % гипса (CaSO4 2H2O). При взаимодействии цемента с водой возникают процессы гидратации (реакция, протекающая с присоединением воды) и гидролиза (реакции без распада вещества или с распадом его и образованием новых соединений). Эти сложные процессы в общих чертах могут быть отнесены к следующим реакциям главнейших минералов. В процессе взаимодействия с водой трехкальциевого силиката происходит гидролитическая диссоциация по реакции: 3CaOSiO2+nH2O - 2CaOSiO2 nH2O+Ca(OH)2. Двухкальцевый силикат при взаимодействии с ограниченным количеством воды гидратируется по следующиму уравнению: 2СaOSiO2+nH2O – 2CaO SiO2 nH2O. Трехкальцеевый алюминат весьма быстро присоединяет воду по уравнению: 3CaOAl2O3+H2O – 3 CaOAl2O3 6H2O. Поскольку в цементной смеси имеется гипс последний вступает в реакцию с гидротрехкальцеевым алюминатом, образуя труднорастворимое новообразование – гидросульфоалюминат кальция по следующему уравнению: 3CaOAl2O3 6H2O+3(CaSO4 2H2O)+19H2O – 3CaOAl2O3 3CaSO4 31H2O. Четырехкальцеевый алюмоферрит при взаимодействии с водой образует: 4CaOAl2O3Fe2O3+nH2O – 3CaOAl2O3 6H2O+CaOFe2O3 nH2O. Таким образом, в асфальтобетоне с применением цемента в качестве минерального порошка, несмотря на наличие на их поверхностях структурированных пленок битума, при увлажнении могут происходить в какой-то мере реакции гидролиза и гидротации клинкерных минералов с образованием указанных новообразований. Иследование возможности протекния реакций гидролиза игидротации клинкерных минералов в водонасыщенном асфальтобетоне, химического взаимодействия компонентов битума с цементом не проводились. Для выяснения вопроса о возможности применения цемента в качестве минерального порошка в асфальтобетонных смесях необходимо провести комплексное исследование по решению следующих задач: -изучение процессов взаимодействия портландцемента и шлакопортландцемента с компонентами битума и свойств асфальтовяжущего на их основе; -обоснование оптимальной добавки цемента в минеральном порошке при его частичной замене; -разработка рациональных составов асфальтобетонных смесей с применением цемента в качестве минерального порошка и с использованием минерального порошка с оптимальной добавкой цемента для устройства верхних слоев покрытий автомобильных дорог; -исследование физико-механических характеристик, долговечности и коррозионной стойкости полученного асфальтобетона; -подготовка нормативно-технической документации для внедрения в производство результатов работы; -апробация результатов теоретических и лабораторных исследований в промышленных условиях. Список литературы 1. ГОСТ Р 52129-2003. «Порошок минеральный для асфальтобетонных и органоминеральных смесей. Технические условия». - М., 2003. – 12с. 2. Высоцкая М.А. Асфальтобетон с применением известьсодержащих минеральных порошков. Автореферат на соиск. уч. степ. канд. техн. наук. – Белгород, 2004. – 22с. 3. Высоцкий А.В. Эффективный асфальтобетон на минеральных материалах из железосодержащего техногенного сырья КМА. Автореферат на соиск. уч. степ. канд. техн. наук. - Белгород, 2004. - 23с. 4. ГОСТ 9128-97. «Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия». - М., 1997. - 13с. С анализом российского рынка ЩМАС Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок стабилизаторов щебеночно-мастичных асфальтобетонных смесей в России». Гридчин А.М., д-р техн. наук, проф., Шухов В.И. канд. техн. наук, доц., Кайдалов О.А., аспирант Белгородский государственный технологический университет им. В.Г. Шухова
|