Значимость решения задачи практического получения искусственного портландитового камня очевидна. Действительно, если бы удалось найти приемлемые способы управления формированием прочного портландитового кристаллического сростка, то можно было бы создать эффективные технологии изготовления строительных материалов и изделий из доступного и относительно малоэнергоемкого исходного продукта, каким является известь, и можно было бы во многих случаях заменить клинкерное цементное вяжущее. В строительной практике, как известно, широко используется принцип получения искусственного камня на основе кристаллизации моногидратов в виде пространственной системы прочно связанных частиц новообразований. Этот принцип успешно реализуется в гипсовом, магнезиальном и других вяжущих веществах мономинерального состава. Если исходить из того, что процессы отвердевания моногидратных систем подчиняются единым закономерностям, обоснованной следовало бы считать возможность прямого получения монолита также и при гидратации СаО и кристаллизации портландита – Са(ОН)2, то есть возможность формирования прочного портландитового камня и на основе известкового вяжущего, что, однако, практически не обеспечивается. Гидратация и твердение вяжущих моно- и полиминерального состава включает известную последовательность процессов достижения камневидного состояния: адсорбцию (хемосорбцию), смачивание, гидролиз и гидратацию, насыщение и пересыщение раствора, зародышеобразование и кристаллизацию, формирование сростка кристаллов посредством контактов их примыкания, срастания и прорастания, рекристаллизацию сростка. С точки зрения условий формирования прочного искусственного камня наиболее ответственной является стадия кристаллизации, которая может завершаться как получением прочных пространственных образований, так и деструкцией кристаллов и их сростков вследствие возможного действия неуправляемого кристаллизационного давления. Такое явление может усиливаться рядом дополнительных факторов, например, температурными объемными деформациями частиц твердой фазы в условиях повышенной экзотермии реакции гидратации, дегидратацией новообразований, разрушением сложившейся системы новообразований из-за интенсивного разогрева и паровыделения в системе «вяжущее вещество – вода». Именно так обстоит дело с известковым вяжущим, у которого процесс гидратации и «твердение» завершаются получением не камневидного состояния, а порошковой извести-пушонки. И причина этого заключается, прежде всего, в исключительно высоком термодинамически неравновесном состоянии продукта обжига карбоната кальция – извести, которое (состояние) обусловливает «взрывное» и аномальное развитие процесса ее гидратации и кристаллизации с чрезвычайно высоким тепловыделением. Из сказанного очевидно, что «камнем преткновения» в использовании потенциала извести для образования качественного монолита из кристаллов портландита является «саморазрушающий» характер гидратации СаО и кристаллизации Са(ОН)2. Необходимо отметить, что попытки преодоления саморазрушающего характера гидратации извести предпринимались, но достигнутые отдельные положительные результаты, к сожалению, не дали промышленного выхода. Термодинамический и физико-химический анализ проблемы приводит к выводу о том, что для предотвращения неуправляемого взрывного характера гидратации СаО и кристаллизации Са(ОН)2 необходима система принципов и приемов регулирования этих процессов: 1) изменение термодинамического состояния самого продукта обжига карбоната кальция – СаО за счет применения новых технологий и режимов декарбонизации СаСО3; 2) изменение теплового баланса системы «известь – вода» путем «разбавления» ее жидкой фазой и термопассивным компонентом; 3) химическое регулирование процессов гидратации с помощью добавок, «вмешивающихся» в кинетику кристаллизации; 4) управление теплообменом системы «известь – вода» со средой. Все указанные направления несут в себе определенный физико-химический смысл и представляют перспективный проблемный интерес. На сегодня, пожалуй, единственным радикальным эффективным приемом преодоления «камня преткновения» оказывается предлагаемое нами отделение стадии образования индивидуальных кристаллогидратов Са(ОН)2 от стадии формирования сростка кристаллов и последующее получение структуры искусственного портландитового камня на основе механизма контактно-конденсационного твердения. Такой исследованный нами технологический принцип обеспечивает искусственному портландитовому камню прочность при сжатии практически до 30 МПа непосредственно после прессового формования влажных предварительно полученных специальным образом индивидуальных кристаллов Са(ОН)2. С учетом того, что качественные характеристики искусственного поликристаллического камня предопределяются свойствами и состоянием слагающих его исходных монокристаллов, в наших исследованиях рассмотрены три технологических варианта (I–III) управления структурообразованием монокристаллов портландита. Варианты отличаются скоростью гидратации СаО и кристаллизации Са(ОН)2, которые (скорости) обеспечивались посредством изменения концентрации в системе СаО – Са(ОН)2 – Н2О за счет регулирования величины водотвердого отношения, режимов перемешивания, температурных условий протекания процессов и др. Достигаемое в каждом из вариантов состояние монокристаллов портландита оценивалось методом рентгенофазового анализа, инфракрасной спектроскопии, растровой электронной микроскопии и калориметрии. Результаты исследований подтвердили, что кристаллы портландита весьма чувствительны к условиям их получения: формирующиеся кристаллы отличаются как по размеру, так и по форме; в зависимости от способа гидратации извести они могут быть как без четкой формы и мелкокристаллическими (с размером частиц менее 0,5–1 мкм), так и в виде пластинок правильной гексагональной формы с размером в поперечнике до 5 мкм и толщиной 0,2 мкм, а также в виде шестиугольных призм длиной до 1,5–2 мкм.
|