В настоящее время в промышленности строительных материалов накоплен определенный опыт эффективного использования отходов и попутных продуктов различных отраслей народного хозяйства, широкое применение которых не только увеличит сырьевые ресурсы строительных материалов, уменьшит капитальные вложения на строительство предприятий, но и позволит ликвидировать значительные непроизводственные затраты на сооружение и эксплуатацию отвалохранилищ, очистных сооружений и т.д. Кроме этого, использование отходов позволит расширить ассортимент строительных материалов и изделий. Металлургические шлаки уносят в отвал более 1200 кДж/кг, огромные средства расходуются на содержание отвалов, т.к. на Оскольском электрометаллургическом комбинате ежегодно попадает в отвал более 360 тыс. тонн шлака. Анализ литературных данных показал, что металлургические шлаки являются продуктом плавления флюсующих пород (обычно известняков или извести), облегчающих плавку металлов и извлекающих из них вредные примеси [1]. В зависимости от химического состава и условий охлаждения кристаллические шлаки могут содержать силикаты кальция в виде различных модификаций белита, ранкинит, псевдоволластонит, мелилит, оксид магния, железосодержащие минералы и могут быть в свободном состоянии оксиды и гидроксиды кальция и магния. Содержание белитовой фазы в шлаках колеблется от 30 до 60%, что делает их весьма перспективным сырьем для производства строительных материалов. На основе таких шлаков можно получить строительные материалы высокого качества при меньших энергозатратах. Рентгенофазовый анализ показал наличие в шлаке ОЭМК:γ-модификации C2S, MgO, Fe2O3, FeO, SiO2 и частично неразложившийся СаСО3. По модулю основности шлак является высокоосновным. Химический состав шлака приведен в табл.1. Данный шлак преимущественно состоит из рассыпавшейся белитовой фракции (содержание γ- C2S=60%). В естественных условиях твердения γ- форма C2S является инертной. MgO в шлаках представлен в основном периклазом, при автоклавной обработке дает значительное увеличение объема. Ускорить процесс гидратации этих фаз можно, используя активизаторы твердения, в частности щелочи. В качестве такой добавки можно использовать пыль вращающихся печей цементных заводов с высоким содержанием щелочей. При исследовании пыли электрофильтров вращающихся печей ЗАО «Белгородский цемент» обнаружено в ней повышенное содержание щелочей КСl, К3Na(SО4)2, а также небольшое количество СаСО3, SiО2. Пыль поля №3 ЗАО «Белгородский цемент» отличается от предыдущих проб повышенными дисперсностью (Sуд =243 м2/кг) и содержанием растворимых соединений до 72,5 %. Таблица 1 Химический состав исходных материалов Мате | Содержание оксидов, масс. % | ППП | риал | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | R2O | % | Шлак | 21,4 | 5,83 | 11,57 | 38,6 | 9,67 | 0,2 | 0,25 | 12,5 | Пыль | 9,8 | 2,19 | 1,75 | 38,9 | - | 4,7 | 13,6 | 29,6 |
При исследовании влияния цементной пыли на активность шлака в составе известково-песчаного вяжущего шлак предварительно измельчали до Sуд=498,2 м2/кг. Образцы пластического формования автоклавировали при Т=175 оС по режиму 2–6–2 часа. При введении пыли в шлак (состав 7, см. табл.2) автоклавированные образцы не испытывали неравномерность изменения объема, прочность при сжатии образцов составила 6,7 МПа. Следовательно, цементная пыль активизирует гидратацию основных компонентов шлака. |