новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Исследование рынка резиновых спортивных товаров в России
Исследование рынка медболов в России
Рынок порошковых красок в России
Рынок минеральной ваты в России
Рынок СБС-каучуков в России
Рынок подгузников и пеленок для животных в России
Рынок впитывающих пеленок в России
Анализ рынка преформ 19-литров в России
Исследование рынка маннита в России
Анализ рынка хлорида кальция в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

    Рециклинг

    ЯЧЕИСТЫЕ БЕТОНЫ НА ОСНОВЕ ТЕХНОГЕННЫХ ОТХОДОВ


    Составы огнестойких ячеистых бетонов разработаны на основе целого комплекса промышленных алюминатных отходов.  Их характеристики не уступают традиционным дефицитным легковесным жаростойким материалам с температурой применения от 600 до 1200 оС.


    Получен целый класс огнестойких ячеистых бетонов на традиционных цементах с добавками муллитокремнеземистых, алюминатных шлаков — вторичных продуктов ряда промышленных производств, твердеющих в нормальных условиях при невысоких температурах и гидротермальной обработке.

    Соотношение сырьевых компонентов определяется требованиями состава и условиями формования широко известных методов массового производства ячеистых бетонов.

    Так, еще в НИИЖБ в 1948 г. К. Д. Некрасовым и М. Я. Кривицким был получен автоклавный жароупорный пенобетон, выдерживающий воздействие температуры до 700 0С. Затем — жаростойкий газобетон автоклавного и неавтоклавного твердения с температурой применения до 800 0С. При этом в качестве вяжущего использовался портландцемент с тонкомолотыми добавками на основе вторичных промпродуктов.

     К. Д. Некрасову, А. П. Тарасовой и В. А. Жи-лину удалось получить газобетон с температурой применения до 1000 0С  с вяжущим — на основе силикат-глыбы. Дальнейшее повышение температуры применения жаростойкого газобетона до 1 200 и 1 400 0С было осуществлено А. П. Карповой на вяжущем с использованием глиноземистого и высокоглиноземистого цементов.

    В период 1977–1980 гг. в НИИЖБ совместно с ВНИИСтром  продолжены работы по созданию жаростойкого газобетона. Задачей уже этих работ было улучшение физико-механических свойств, а также отработка технологии изготовления жаростойкого газобетона в опытно-промышленных условиях.

    Одновременно началась работа по получению составов жаростойкого пенобетона с плотностью 600–800 кг/куб. м и температурой применения 800–900 0С. В итоге оказалось, что жаростойкие ячеистые бетоны могут быть изготовлены с предельно допустимой температурой применения от 900 до 1 400 0С.

    Разработанные составы жаростойких бетонов ячеистой структуры на портландцементе и глиноземистом цементе были получены в промышленных условиях и опробированы в условиях эксплуатации в качестве футеровки для тепловых агрегатов ряда металлургических агрегатов в Москве. Осуществился и выпуск опытно-промышленной партии жаростойкого газобетона на основе силикат-глыбы на существующем оборудовании завода для выпуска обычного ячеистого бетона. Изготовленная партия изделий жаростойкого газобетона на силикат-глыбе была применена на Карагандинском металлургическом комбинате(КМК) в виде блоков для теплоизоляционного слоя с эксплуатационной температурой 1 100–1 200 0С при возведении задней стены и свода боковых стен методической печи стана 400 сортопрокатного производства КМК. Жаростойкий газобетон на высокоглиноземистом цементе изготавливался на опытном заводе ВНИИСтрома, а эксплуатационные его свойства были проверены на печах завода «Серп и Молот»  (Москва) и в кузнечно-прессовом цехе филиала ЗИЛ (г. Рязань).

    Специалистами Березовского комбината строительных изделий совместно с Б. О. Багровым были осуществлены работы по получению жаростойких ячеистых бетонов на шлакощелочном вяжущем с температурой применения до 600 0С, а в течение 1975–1977 гг.выпущена опытно-промышленная партия изделий.

    В дальнейшем применение шлакощелочного вяжущего очень эффективно расширялось, в том числе на основе алюмо- и кремнезолей, для изготовления жаростойких ячеистых бетонов, поскольку основные компоненты вяжущего — доменные гранулированные шлаки, шлаки цветной металлургии и золы стали — это попутные продукты основного технологического процесса. Удельные капвложения в производство гранулированного шлака в 10–15 раз меньше, а при помоле — в 2–3 раза, чем у цемента. Имеются значительные резервы для увеличения выхода гранулированных шлаков, поскольку еще от 30 до 50% от общего выхода шлаков сливаются в отвалы.  Довольно значительная часть гранулированных шлаков расходуется нерационально — в качестве различных засыпок, заполнителей для бетонов и низкомарочных вяжущих.

    Самым дефицитным компонентом шлакощелочного вяжущего является щелочной компонент, но расход щелочного компонента в шлакощелочных ячеистых бетонах не превышает 2–6% от массы сухих компонентов смеси. Кроме того, в качестве щелочного компонента в производстве этого материала могут быть использованы попутные продукты ряда химических производств.

    1 | 2
    Версия для печати | Отправить |  Сделать стартовой |  Добавить в избранное
    Статьи по теме
    Новости по теме
  • Новые перспективы применения доломита
  • Химический комплекс Новосибирска – фактор экологического состояния Сибири
  • В Екатеринбурге открылась выставка «Химический комплекс-2003»
  • Ситуация на «Фосфоре» постепенно стабилизируется
  • Россия готова сотрудничать с индийскими химиками
  • Sumitomo Chemical расширяет свое присутствие на рынках США, Великобритании и Ирландии
  • Lafarge обязуется уменьшить выбросы углекислого газа

    Куплю

    19.04.2011 Белорусские рубли в Москве  Москва

    18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

    04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

    Продам

    19.04.2011 Продаем скипидар  Нижний Новгород

    19.04.2011 Продаем растворители  Нижний Новгород

    19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

    Материалы раздела

    "РОСТЕХНОЛОГИИ" СОЗДАДУТ КОМПАНИЮ-НАЦИОНАЛЬНОГО МУСОРНОГО ОПЕРАТОРА
    ИЗ ШИРОКОРЕЧЕНСКОЙ СВАЛКИ СДЕЛАЮТ САД
    ЧЕЛЯБИНСКИЕ ПРОЕКТЫ ПО РЕЦИКЛИНГУ ШЛАКОВ И ЗОЛЫ
    МУСОРОСОРТИРОВОЧНЫЕ КОМПЛЕКСЫ "АМСТРО-ДОН"
    ПЕРЕРАБОТКЕ ШЛАКОВ ФЕРРОХРОМА В КАЗАХСТАНЕ
    ОБРАЩЕНИЕ ТБО В ЯРОСЛАВСКОЙ ОБЛАСТИ
    РЕЦИКЛИНГОВЫЕ ПРОИЗВОДСТВА «ТАТНЕФТИ»
    РЕЦИКЛИНГ АВТОПОКРЫШЕК В РОССИИ
    БЕЛОРУССКИЙ ПРОЕКТ ПО ПЕРЕРАБОТКИ ОТХОДОВ КАЛИЙНОГО ПРОИЗВОДСТВА
    УСТАНОВКИ STETTER ДЛЯ РЕЦИКЛИНГА БЕТОНА
    АВТОРЕЦИКЛИНГ В ТАТАРСТАНЕ
    ВТОРПЕРЕРАБОТКА РУБЕРОЙДА
    ИСПОЛЬЗОВАНИЕ СТЕКЛОБОЯ КАК ЗАПОЛНИТЕЛЕЯ БЕТОНОВ
    ТЕХНОЛОГИИ BEUMER ПОЛУЧЕНИЯ ТОПЛИВ ИЗ АВТОПОКРЫШЕК
    ЕВРОХИМ: электроэнергия из отходов серной кислоты
    НОВЕЙШИЕ РАЗРАБОТКИ В ОБЛАСТИ РЕЦИКЛИНГА ПОЛИМЕРНЫХ ОТХОДОВ
    ПОЛУЧЕНИЕ КЛЕЕВ ИЗ ОТХОДОВ ПЕНОПОЛИСТИРОЛА
    БЕТОН ИЗ КИНЕСКОПНОГО СТЕКЛА
    ТЕХНОПОЛИС «ХИМГРАД»: комплексный рециклинг полимерных отходов
    ТЕПЛОИЗОЛЯЦИЯ ИЗ СТЕКЛОБОЯ
    ПЕРЕРАБОТКА БЕТОНОЛОМА
    ОЧИСТКА ТРАНСФОРМАТОРНЫХ МАСЕЛ
    ЛИНИЯ GNEUSS ДЛЯ ПРОИЗВОДСТВА ПЛЕНОК ИЗ ВТОРИЧНОГО ПЭТ
    ОБЗОР ТЕХНОЛОГИЙ ПЕРЕРАБОТКИ ОТРАБОТАННЫХ МАСЕЛ.
    БЕТОНЫ ИЗ ФОСФОГИПСА
    КОМПЛЕКТНАЯ ЛИНИЯ RETECH RECYCLING TECHNOLOGY ПО ПЕРЕРАБОТКЕ ПЭТФ БУТЫЛОК
    ИГУМНОВСКИЙ ПОЛИГОН: новый «свой» инвестор
    ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ОРГАНОФОСФОНАТОВ
    ВТОРИЧНАЯ ПЕРЕРАБОТКА XPS
    УКРАИНСКИЕ БИОПРОЕКТЫ: деньги на мусор
    УТИЛИЗАЦИЯ ШИН МЕТОДОМ ТЕРМОДЕСТРУКЦИИ
    КОМБИНАТ «СТИРОЛ»: опыт использования отходов для окра-шивания стекла
    СПОСОБЫ АКТИВИЗАЦИИ ШЛАКОВ ПРИ ПОДГОТОВКЕ ШЛАКО-ЩЕЛОЧНЫХ ВЯЖУЩИХ
    БАЙКАЛЬСКИЙ ЦБК: общая проблема
    ПОЛУЧЕНИЕ ВАНАДИЯ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ СЕРНОКИСЛОТНОГО ПРОИЗВОДСТВА
    ГЛИНОЗЕМИСТЫЕ ЦЕМЕНТЫ НА ОСНОВЕ
    ВТОРИЧНАЯ ПЕРЕРАБОТКА ПОЛИУРЕТАНОВ
    ВОЛОКНА ДЛЯ ИНТЕРЬЕРА АВТОМОБИЛЯ ИЗ ВТОРИЧНОГО ПЭТ
    МУСОРНЫЙ ПРОЕКТ ASA GROUP ПОД ВОПРОСОМ
    РЕЦИКЛИНГ ПЭТ: последняя разработка Extricom
    УТИЛИЗАЦИЯ ПНГ: программа «Татнефти»
    НОВЫЕ ТЕХНОЛОГИИ УТИЛИЗАЦИИ ПЛАСТМАСС
    ПЕРЕРАБОТКА НЕФТЕШЛАМОВ РЕЗЕРВУАРНОГО ТИПА
    РЕЦИКЛИНГ ПЭТФ С МЕНЬШИМИ ЭНЕРГОЗАТРАТАМИ
    РЫНОК УСЛУГ ПО ВЫВОЗУ, ПЕРЕРАБОТКЕ И ЗАХОРОНЕНИЮ ТБО

    >>Все статьи

    Rambler's Top100 Рейтинг@Mail.ru
    Copyright © Newchemistry.ru 2006. All Rights Reserved