Результаты контроля состояния окружающей среды показывают, что необходимо определять как основные, так и побочные продукты химической промышленности во всех областях окружающей нас среды. Следствием столь насущной потребности в мониторинге всего, что нас окружает, является вовлечение огромной энергии и ресурсов в разработку сенсоров широкого спектра действия. Конечным результатом этой работы будет обеспечение нас однажды портативными, миниатюрными и интеллектуальными воспринимающими устройствами для мониторинга практически всего, что бы мы ни пожелали. Например, если речь идет о нашем здоровье, то в будущем можно представить себе, что у каждого из нас будет такое самодиагностирующее устройство размером с кредитную карточку со встроенными в него разнообразными химическими и биосенсорами, которое позволит нам в любой момент узнать все о состоянии нашего здоровья. Например, человеку нездоровится. Чтобы узнать причину, ему достаточно будет просто лизнуть чувствительную поверхность своего диагностического устройства - и немедленно на жидкокристаллическом дисплее загорится сообщение: “У Вас обнаружен вирус гриппа, примите аспирин и отдохните”. Что касается мониторинга окружающей среды, то легко представить себе простые устройства, которые можно было бы использовать, скажем, для проверки загрязненности природных вод тяжелыми металлами или для обнаружения бактерий в питьевой воде, в бассейнах или на пляжах. Такими устройствами можно было бы снабдить ванны для проверки качества воды перед купанием. Конечно, это преувеличение - на самом деле наши возможности определяются химией, физикой и электроникой таких устройств, а также техническими возможностями конкретного времени. Не следует упускать из виду тот факт, что возможности всех этих воспринимающих устройств определяются в первую очередь уровнем развития фундаментальной науки. Разработка сенсоров является результатом совместных усилий химиков, биологов, физиков и инженеров-электронщиков и представляет собой поистине междисциплинарную область. Все сенсоры можно разделить на две большие группы. Это физические сенсоры, реагирующие на такие параметры, как температура, давление, магнитное поле и силы, не являющиеся предметом исследования химии. Далее, это химические сенсоры, реагирующие на конкретные, специфические химические реакции, которые и будут подробно рассмотрены в данной работе. ПРИНЦИПЫ РАБОТЫ И УСТРОЙСТВО ХИМИЧЕСКИХ СЕНСОРОВ ХС состоит из химического селективного слоя датчика, дающего отклик на присутствие определяемого компонента и изменение его содержания, и физического преобразователя (трансдьюсера). Последний преобразует энергию, возникающую в ходе реакции селективного слоя с определяемым компонентом, в электрический или световой сигнал, который затем измеряется с помощью светочувствительного и/или электронного устройства. Этот сигнал и является аналитическим, поскольку дает прямую информацию о составе среды (раствора). ХС могут работать на принципах химических реакций, когда аналитический сигнал возникает вследствие химического взаимодействия определяемого компонента с чувствительным слоем, или на физических принципах, когда измеряется физический параметр (поглощение или отражение света, масса, проводимость). В первом случае чувствительный слой выполняет функцию химического преобразователя. Общая схема функционирования ХС изображена на рис. 1. Для повышения избирательности на входном устройстве ХС (перед химически чувствительным слоем) могут размешаться мембраны, селективно пропускающие частицы определяемого компонента (ионообменные, диализные, гидрофобные и другие пленки). В этом случае определяемое вещество диффундирует через полупроницаемую мембрану к тонкому слою химического преобразователя, в котором формируется аналитический сигнал на компонент. На основе ХС конструируют сенсорные анализаторы- приборы, предназначенные для определения какого-либо вещества в заданном диапазоне его концентраций. Эти анализаторы могут иметь малые габариты (иногда приближающиеся к размерам калькулятора или авторучки). Поскольку в их конструкции отсутствуют детали, претерпевающие механический износ, устройства характеризуются достаточно длительным сроком эксплуатации (до года и более). Объединенные в батарею и подключенные к компьютеру, ХС способны обеспечивать анализ сложных смесей и дать дифференцированную информацию о содержании каждого компонента. В сенсорных анализаторах встроенные микросхемы позволяют вводить поправки на изменение температуры, влажности, учитывать влияние других компонентов среды, проводить градуировку и настройку нулевого значения на шкале показаний. ТИПЫ И КОНСТРУКЦИЯ ХИМИЧЕСКИХ СЕНСОРОВ В зависимости от характера отклика (первичного сигнала), возникающего в чувствительном слое ХС, последние подразделяют на различные типы (рис. 2). В настоящее время наибольшее распространение получили электрохимические ХС, и прежде всего амперометрические и потенпиометрические, хотя наблюдается неослабный интерес исследователей и разработчиков к другим типам ХС, в том числе и оптическим. В электрохимических сенсорах (ЭХС) определяемый компонент реагирует с чувствительным слоем непосредственно на электроде или в объеме слоя раствора около электрода. Например, для определения концентрации СО2 в воздухе используют кондуктометрические ХС. Их действие основано на измерении электропроводности водного раствора углекислоты, в котором, как правило, в результате ее диссоциации образуются ионы H+ и HCO3- в количествах, зависящих от парциального давления CO2 в воздухе. Различие в электропроводности между холостым раствором (без СО2) и анализируемым фиксируется как аналитический сигнал. Селективность амперометрического сенсора определяется природой материала электрода, точнее, его поверхности, а следовательно, и величиной потенциала, при котором происходят электрохимические реакции с участием анализируемого компонента. |