Предлагаемое изделие “Термоблок” [см. Львович К.И. Термоблок – стеновой материал XXI века // Строительные материалы, оборудование, технологии XXI века. 2003. № 6] (Пат. 2030527 РФ RU) размером 390х190х188 мм включает оболочку из песчаного бетона и заполнение из минерализованной цементом технической пены (МП). Прочностные характеристики термоблоков позволяют строить из них многоэтажные здания с несущими стенами. Характеристики материалов, используемых для изготовления термоблоков, представлены в таблице 1, изделие и схема укладки – на рисунке 1. Таблица 1. Характеристика | Оболочка (песчаный бетон) | Заполнение (МП) | Марка бетона | М100-400 | - | Морозостойкость | F50-200 | - | Водонепроницаемость | W2-6 | - | Объемная масса, кг/м3 | 1000–2400 | 150 | Коэффициент теплопроводности, Вт/м оС | 0,25–1,51 | 0,036 |
Оболочки изготавливаются на вибропрессах с подъемной матрицей, где одновременно из песчаного бетона формуются от 5 до 12 оболочек, которые на следующем технологическом посту “по сырому” заполняются МП. Термоблоки пакетируются, и стопа из поддонов с изделиями направляется в камеру ТВО.
Несущие функции в термоблоке выполняет оболочка, теплозащитные – заполнение из МП, что исключает использование в технологическом процессе иных базовых материалов кроме цемента и песка. Изготовление оболочки термоблоков вибропрессованием позволяет калибровать их размеры с миллиметровой точностью и производить укладку в стену на слой цементного клея толщиной до 3 мм, что не только снижает расход кладочного материала, но и значительно (до 95%) повышает теплотехническую однородность стены [см. Семенченков А.С. и др. Прогрессивные несущие стеновые ограждения из строительных материалов на основе легких бетонов // Технологии строительства. 2003. № 4]. Конструкция стен из термоблоков содержит только ложковые ряды, их перевязка обеспечивается наличием пазов на нелицевой грани блоков. Пазы при сборке в кладку с перевязкой блоков в соседних рядах оказываются напротив друг друга. Это позволяет для соединения соседних рядов кладки использовать П-образные элементы из арматурной проволоки, легко погружаемые в МП (рис.1). Предлагаемая технология предоставляет уникальные возможности отделки блоков: - за счет изменения формы матрицы можно изготавливать блоки с рельефным, криволинейным и ломаным очертанием передней грани; - введение пигментов в цементно-песчаную смесь позволяет получать цветные блоки. Возможно включенное в технологический процесс окрашивание наружной грани блоков; o “колотая” и “каннелюрная” фактура лицевой грани блока, практически неотличимая от фактуры натурального камня, достигается при изготовлении спаренных блоков с общей лицевой гранью и последующим их раскалыванием. Оборудование для раскалывания также может быть включено в технологический цикл. Наименее исследованным этапом технологии производства термоблоков является изготовление и разливка в оболочки особо легких минерализованных пен. В условиях, когда несущие и теплозащитные функции в изделиях разделены, прочностные и деформативные характеристики МП не являются определяющими для качества термоблока. Более того, даже величина предельной относительной деформации усадки – одна из наиболее значимых характеристик для пенобетона – не является существенной в связи с малым объемом МП в отдельном изделии. Наличие цемента в составе МП обеспечивает надежное ее сцепление с бетоном оболочки и исключает выпадение при пакетировании и транспортировке. Основным критерием качества пенобетонов является их объемная масса (плотность). Это наиболее просто устанавливаемая характеристика, оценивающая объем воздушной фазы в материале и по принятой в нормах классификации определяющая его теплозащитные свойства. Следует отметить, что объемная масса, и, в первую очередь, при низких ее значениях (менее 200 кг/м3), не полностью определяет теплозащитные свойства пенобетонов из-за различной структуры материала. |