4. Волокнистые материалы, изготовленные электропрядением С помощью традиционных технологий прядения волокна, таких как мокрое прядение, сухое прядение, прядение из расплава и гелепрядение можно производить полимерные волокна с диаметрами до значений микрометрового диапазона. При уменьшения диаметра волокна с микрометров до нанометров можно получить очень большое отношение площади поверхности к объему. Эти уникальные свойства делают полимерные нановолокна идеальными кандидатами для использования во многих важных применениях. Полимерные волокна могут генерироваться из электростатически стимулируемой струи полимерного раствора или полимерного расплава (Рис. 1). Эта технология, известная как технология электропрядения, привлекала большое внимание в предыдущем десятилетии благодаря тому, что она обеспечивала возможность повторяемого производств полимерного волокна с диаметром в диапазоне от 50 до 500 нм.15"19 Благодаря небольшим размерам ячеек и большой площади поверхности, которые изначально присущи текстильным, материалам, изготовленным электропрядением, эти ткани являются многообещающими для производства защитной одежды для солдат (они позволят максимально повысить выживаемость, возобновляемость и боевую эффективность индивидуальных систем солдатской одежды для борьбы с экстремальными погодными условиями, и в условиях баллистической, ядерной, биологической и химической войны). Другими областям, где они могут потенциально применяться, являются производство фильтрационных материалов, мембран, армирующих волокон в композитных материалах, оптических и электронных применениях (пьезоэлектрические, оптические датчики). Доставка лекарственных препаратов с полимерными нановолокнами основана на принципе повышения скорости разложения частиц лекарственного препарата с увеличением площади поверхности, как самого препарата, так и соответствующей подложки. Многие практически применяемые биомедицинские устройства (например, в области косметики: средства ухода за кожей и средства очистки кожи, повязки для ран, устройства доставки лекарственных препаратов и фармацевтические товары) могут изготавливаться с использованием нановолокон. Их также можно использовать для поддержки энзимов или катализаторов и в качестве платформ для инжиниринга тканей и шаблонов для формования полых волокон с внутренним диаметром в наноразмерном диапазоне. В принципе в результате электропрядения образуется нетканый войлок. При использовании только одной струи это очень медленный, но устойчивый процесс. Он напоминает работу паука, который может за одну ночь создать сложное и искусно выполненное полотно. Промышленное производство электропряденого полотна существует с восьмидесятых годов, но об этом известно очень немного. Рисунок 1. Схематичное изображение технологии электропрядения.
Несколько лет тому назад группа ученых из Технического университета Либерека (TUL) продемонстрировала технологию NanospiderTM, которая является вариантом технологии электропрядения и осуществляется с использованием барабана вместо сопл (Рис. 2). Машина может производить нановолокна с массой от 0.1 до 10 г/м.2 и с диапазоном диаметров от 200 до 500 нм. С помощью технологии Nanospider можно производить от 0.1 до 1 г материала менее чем за минуту. Для сравнения можно сказать, что для того, чтобы получить такой же результат с использованием традиционных технологий электропрядения, потребуется не менее часа. Компания Elmarco (Либерек, Чешская Республика) в настоящее время предлагает на рынке промышленные с высокой производительностью и лабораторные машины для производства нанохолста.
|