Сиккема (один из соавторов) разработал полимерные волокна М5. Это сверхпрочные волокна с модулем 330 ГПА и прочностью на разрыв 5 ГПа. Компания Du Pont de Nemours в настоящее время разрабатывает товарные волокна и пряжи из M5. Очень интересный мономер, 2,5-дигидрокситерефталевая кислота, используется для производства поли-2,6-диимидозо[4,5-b:40,50-e]пиридинилен-1,4-(2,5-дигидрокси)фенилена (PIPD). Уникальной чертой этих полимеров является то, что две гидроксильные группы (на терефталевой кислоте) могут образовывать межмолекулярные связи и, следовательно, фибриллирование, которое часто является проблемой для арамидных волокон, здесь практически исключается. В результате, у волокон M5 самый высокий предел прочности при сжатии среди всех синтетических волокон, Исследовательская оценка ультрафиолетовой стабильности М5 показала наличие превосходных эксплуатационных характеристик в этой области. Механические свойства этого нового волокна делают его конкурентоспособным по отношению к углеволокну при изготовлении многих применений, имеющих легкие, тонкие, выдерживающие нагрузку, жесткие, современные композитные компоненты и структуры. Огромные усилия были предприняты для разработки сверхпрочного кевлара, и, в последнее время, волокон PBO. Не так давно компания DuPont de Nemours объявила о планах расширения производства кевларовых полимеров на своем предприятии в Спруансе на 25% к 2010 г. для того, чтобы быть в состоянии удовлетворить растущий спрос. Благодаря своей высокой прочности на разрыв, высокому рассеянию энергии, низкой плотности и снижению веса, а также удобству кевлар используется при производстве пуленепробиваемых жилетов, шлемов, средств защиты собственности, панелей, средств защиты автомобилей и стратегического защитного экранирования для защиты человеческой жизни. Волокна PBO были запущены в промышленное производство компанией Toyobo Co. в 1998 г. под торговым названием Zylon после почти 20 лет исследований в Соединенных Штатах и Японии. Волокна РВО обладают выдающими свойствами в области модуля упругости при растяжении (352 ГПа) и прочности на разрыв (5.6 ГПа) по сравнению с другими имеющимися на рынке высокоэффективными волокнами. Их удельная прочность и удельный модуль в 9 и 9.4 раз выше чем у стали.6,7 К сожалению для PBO, высоким эксплуатационным характеристикам сопутствуют и существенные проблемы. Хорошо известна плохая устойчивость РВО к воздействию ультрафиолетовых лучей и видимого излучения. У РВО также отсутствует осевая прочность при сжатии. Прочность волокна РВО на разрыв также снижается в высокотемпературных и влажных средах. Немалые усилия были приложены для того, чтобы осуществить химическое изменение волокна РВО для повышения осевой прочности при сжатии. И волокно кевлар, и волокно РВО рассмотрены Афшари и его коллегами в этой статье. Прочие высокоэффективные продукты, такие как волокна Vectran или PVA (Kurray) здесь рассматриваться не будут. Мы надеемся собрать данные для другой работы о специальных синтетических волокнах в ближайшем будущем.
|