РАЗНООБРАЗИЕ ВАРИАНТОВ И ОТСУТСТВИЕ АЛЬТЕРНАТИВЫ В настоящее время разработана большая номенклатура аппаратов измельчения свободным ударом. Однако в крупнотоннажном производстве нашли применение только ударно-отражательные дробилки, серьезно потеснив, а в некоторых областях и практически полностью заменив, «тихоходные» агрегаты дробления. Ударные мельницы же, несмотря на безупречность теоретических посылов для их создания, не могут похвастаться подобными успехами, сферой их применения является относительно грубый помол мягких материалов до размеров частиц в 100 мкм, с невысокой производительностью и относительно большими затратами энергии. Редкие исключения, когда рассматриваемые машины все же используются для помола мягких, малоабразивных материалов только лишний раз указывают на серьезные проблемы технической реализации принципов ударного диспергирования. Даже спустя десятилетия научных исследований, экспериментов, масштабных испытаний, модернизаций и улучшений современные мельницы свободного удара, используемые в производстве высокодисперсных порошков '28Sуд ≥ 3000 см2/г), не имеют существенных преимуществ перед шаровыми мельницами ни по одному из ключевых показателей. Напротив, попытки промышленного использования наиболее ярких представителей быстроходных машин ударного диспергирования: струйных и вихревых мельниц, дезинтеграторов и дисмембраторов выявили целый ряд их серьезнейших недостатков. В частности, расход энергии центробежной мельницы при помоле цементного клинкера до удельной поверхности 2500 см2/г превышает 200 кВт на тонну, что почти в десять раз больше, чем затрачивают многокамерные шаровые мельницы, используемые в производстве цемента [5]. Не приходится удивляться и весьма низкой технической надежности вихревых, центробежных, а также подобных им быстроходных мельниц, учитывая высокую скорость движения помольных элементов, находящихся в постоянном контакте с материалами различной степени абразивности. Струйные мельницы характеризуются также большим расходом энергии, который дополняется и относительно быстрым износом деталей, контактирующих с измельчаемым материалом, высокой сложностью самого агрегата, а также его периферии. Так как размольная мощность струйных мельниц не велика, получение высокодисперсных порошков возможно только в замкнутой схеме помола при интенсивной циркуляции материала. В некоторых случаях эта циркуляция в десятки раз превосходит производительность самой мельницы. Дополнительные сложности применения струйных мельниц создает необходимость очистки больших объемов отходящего воздуха и неизбежный унос наиболее высокодисперсной фракции материала с отработанным носителем. Из перечисленных агрегатов дезинтегратор является примером, пожалуй, наиболее успешной реализации ударного измельчения твердых материалов. Существует обширный опыт промышленного использования дезинтеграторных мельниц-активаторов в производстве оригинального строительного материала – силикальцита, получаемого путем совместного помола извести и кварцевого песка [6]. Однако применение быстроходных дезинтеграторов ограничено относительно грубым помолом. Получение порошков с удельной поверхностью до 2000 см2/г включительно можно считать естественным пределом для данного вида оборудования. Предпринимаемые попытки увеличения размольной мощности дезинтеграторов за счет большей частоты вращения помольных органов вызывают ускоренный износ последних, уменьшая и без того небольшие сроки безремонтной эксплуатации (Рис.2). Для того, чтобы понять, почему применение измельчителей ударного действия сегодня ограничено только грубым помолом мягких материалов, необходимо пересмотреть способы реализации ударного разрушения твердого тела с позиции основных законов Ньютоновской механики: инерции, действия и противодействия. Именно здесь и скрывается ответ на вопрос: почему ударные дробилки успешно используются во всем мире, а мельницы свободного удара, так и не реализовав и малой части своих потенциальных возможностей, нашли очень ограниченное применение. СКОРОСТЬ, МАССА, РАЗМЕР В мельницах ударного действия разрушение частиц материала происходит вследствие ударных нагрузок. Эти нагрузки могут возникнуть в самых разнообразных условиях и обстоятельствах. Например, при падении мелющих тел, при столкновении летящей частицы с неподвижной преградой или, напротив, столкновения мелющих тел с неподвижной или движущейся частицей, также возможны и взаимные соударения частиц в полете. Но в любом случае кусок материала или само мелющее тело должно обладать таким количеством кинетической энергии, которой хватило бы для преодоления внутренних связей между частицами. При ударном измельчении разрушающий эффект зависит от массы тела и его скорости. Кинетическая энергия тела в момент удара определяется по известной формуле: E=mV2/2, где m - масса тела, а V - его скорость. Чем больше вес куска материала и выше его скорость, тем эффективней работа ударного диспергирования. Если уменьшить массу тела, для достижения тех же результатов измельчения нужно увеличить его скорость и наоборот, но в любом случае u1085 недостаток одного должен компенсироваться избытком другого - это основа способа измельчения ударом. Несмотря на все разнообразие конструкций измельчительных машин ударного действия, механика разрушения твердого тела различается лишь некоторыми нюансами, что хорошо прослеживается на примере центробежной мельницы и ударно-отражательной дробилки. В последней материал, подлежащий измельчению, подается на быстро вращающийся ротор-ускоритель, частицы приобретают скорость, равную скорости ротора, и выбрасываются в пространство помольной камеры, их разрушение происходит при ударе об отражательные плиты и столкновении друг с другом в полете (Рис.3).
|