Несмотря на то что эти общие оценки перспектив нанотехнологий были даны Доном Эйглером «целых» три года назад, они и сегодня абсолютно не устарели. Так, наномедицина и, шире, нанобиотех, безусловно, были и остаются лидирующими направлениями в нанотехнологическом комплексе, привлекающими многомиллиардные инвестиции как на государственном, так и на корпоративном уровне. От наномедиков и нанобиологов сегодня ждут чуть ли не скорого избавления от всех болезней и изобретения волшебного рецепта вечной молодости. И, пожалуй, один лишь сухой перечень прогнозируемых различными форсайт-конторами в средне— и долгосрочной перспективе нанобио— и наномедицинских прорывных разработок и открытий способен ввести в состояние долгой эйфории любого гомо сапиенса, испытывающего беспокойство по поводу своего здоровья и здоровья близких ему особей. Что же касается второй, по классификации Эйглера, синтетической дисциплины, наноэнергетики, ограничимся здесь лишь упоминанием о двух ее ключевых направлениях. Во-первых, очень большие надежды сегодня связываются с применением новых нанотехнологических методик для создания сверхдолгоживущих компактных источников питания (батарей и аккумуляторов). Один из векторов развития этих методик связан с поиском новых технологических возможностей интегрирования наноматериалов и наночастиц в традиционную архитектуру зарядных устройств, другой — с разработкой принципиально новой архитектуры, основанной на микро— и наноэлектромеханических системах (МЭМС и НЭМС). Во-вторых, активно разрабатываются новые технологии использования наночастиц в фотоэлектрических элементах/источниках энергии (панелях солнечных батарей), как для производства этих фотоэлементов при более низких температурах, так и с целью повышения их общего КПД. Третье (а для кого-то, быть может, и первое) по значимости направление развития нанокомплекса — разработка новых поколений электронных устройств и приборов, использующих необычные физические свойства материи и вещества на наноуровне. Так, мировая компьютерная индустрия на протяжении многих лет занята лихорадочными поисками возможных замен традиционной технологии CMOS (металл-оксид-полупроводниковой технологии построения электронных схем, в которой используются полевые транзисторы с изолированным затвором с каналами разной проводимости) и разработкой базовых принципов технологии «пост-CMOS» на базе различных наноустройств цифровой логики, памяти и связи. Сегодня достаточно очевидно, что в течение ближайших 10–15 лет дизайн микроэлектронных схем претерпит существенные изменения. Причем это будет обусловлено как все возрастающей трудоемкостью применения традиционных технологий — литографии, травления, допирования (введения примесей) и др. — для все более миниатюрных объектов, так и все усиливающейся необходимостью эффективно управлять ростом наноструктур и наноструктурных материалов. В конечном счете исследователям необходимо получить такое управление ростом, при котором электронные и структурные свойства наноматериалов можно было бы четко контролировать и использовать в дальнейшем при компоновке микроэлектронных схем. Данная задача уже почти решена для многих типов наноструктур, например для нанотрубок, нанопроводников и квантовых точек, но для электродных материалов и диэлектриков и для таких новых материалов, как органические наноструктуры, это сделать еще предстоит. Впрочем, по мнению разработчиков дорожной карты «Производственные наносистемы. Обзор технологических перспектив», официально опубликованной в 2008 году по заказу министерства энергетики США, ключевым направлением дальнейшего развития всего нанотехнологического комплекса должны стать так называемые технологии атомарной точности (ТАТ), под которыми, в широком смысле, понимаются любые технологии, использующие сложные структуры, составленные из атомов в строго определенной конфигурации. На первом этапе американскими аналитиками рассматриваются базовые принципы организации атомарно точных производственных процессов (ПАТ), в которых используется управляемая последовательность операций для конструирования (сборки) структур с атомарной точностью. Конкретный пример управления такими процессами — сканирующие зонды на кристаллических поверхностях. Позднее на базе ТАТ должно получить развитие создание производственных наносистем с атомарной точностью (ПНАТ), которые самостоятельно обладают атомарной точностью. В частности, все биологические системы ПАТ одновременно уже являются ПНАТ. Умные материалы Список потенциально возможных продуктов, которые можно будет получить с использованием технологий атомарно точного производства (ПАТ), в частности, включает уже упомянутые выше терапевтические наноагенты адресной доставки, эффективные солнечные фотоэлементы, обладающие высокой удельной мощностью водородные топливные элементы, различные одномолекулярные и одноэлектронные сенсоры, устройства компьютерной памяти со сверхвысокой плотностью, высокоселективные химические катализаторы и наномембраны и т. д. Иными словами, авторы этой американской дорожной карты пытаются инкорпорировать в ПАТ практически весь уже имеющийся или только разрабатываемый нанотехнологический арсенал. Насколько правомерна подобная терминологическая и методологическая редукция, сказать трудно, да и, в конце концов, обычным гражданам все эти концептуальные надстройки, скорее всего, не слишком интересны. Рисунок: Константин Батынков Куда понятнее и осязаемее выглядят сами новые нанотехнологии, а также новые наноматериалы с уникальными физическими свойствами и характеристиками. |