Известно, что величина коэффициента теплопроводности газобетона зависит не только от плотности материала, но и от составляющих компонентов. Так, использование немолотых песков в неавтоклавном газобетоне ухудшает его теплотехнические свойства в среднем на 30 % по сравнению с автоклавным и цементно-зольным газобетоном (рис. 3). Результаты эксперимента показали, что теплопроводность неавтоклавного цементно-зольного газобетона колеблется в пределах 0,13–0,16 Вт/(м•оС) в зависимости от пробы золы ТЭЦ и средней плотности бетона. Однако определение этих коэффициентов занимает немало времени и требует дорогостоящей аппаратуры. Поэтому предлагается следующий способ оценки и прогнозирования теплопроводности. Для этой цели нами были построены зависимости между коэффициентом теплопроводности и характеристиками зол ТЭЦ, которые описываются регрессионным уравнением: — коэффициент теплопроводности от оксида кальция свободного суммарного и насыпной плотности (R = 0,95): λ = –2,81 + 0,005•ρнас + 0,05•СаОсумсв – (0,21e – 5)•ρнас2 – (0,19e – 4)•ρнас•СаОсумсв – 0,003•(СаОсумсв)2. (3) Известно, что существует связь между прочностью и средней плотностью ячеистого бетона, которая может выражаться через коэффициент конструктивного качества (ККК). ККК для неавтоклавного золо-цементного газобетона находится в пределах 5–9, для цементно-песчаного — 3,2, для классического автоклавного газобетона — 5,7. Основными технологическими параметрами, определяющими прочность при сжатии и изгибе газобетона, являются активность золы (содержание в золе свободного оксида кальция, критерий ΔТ), В/Т сырьевой смеси, а также сроки схватывания и ППП золы. В результате статистического анализа установлена степень влияния независимых переменных (свойства зол ТЭЦ) на прочность при сжатии и изгибе. При этом можно отметить то, что практически у всех установленных зависимостей она, как правило, непостоянна и изменяется во времени твердения газобетона. Установлены следующие основные корреляционные зависимости: — прочности при сжатии (28 сут. нормального твердения) от теста нормальной густоты и оксида кальция свободного суммарного (R = 0,84): Rсж = –8,65 + 0,89•СаОсумсв + 0,68•ТНГ – 0,026•(СаОсумсв)2 – 0,017•СаОсумсв•ТНГ – 0,012•ТНГ2; (4) — прочности при изгибе (28 сут. нормального твердения) от площади удельной поверхности и потерь при прокаливании (R = 0,73): Rизг = –3,28 + 0,0027•ППП – 0,28•Sуд – (0,53e – 6)•ППП2 – (–0,95e – 4)•ППП•Sуд – 0,0024•Sуд2; (5) Как известно, наличие свободной извести в высококальциевой золе всегда приводит к деформациям расширения золосодержащих материалов. Применение химических добавок в зольных системах часто способствует более интенсивной гидратации свободной извести золы за счёт связывания её в обменных реакциях (1, 2). Рис. 4. Изменение линейных деформаций во времени в зависимости от состава сырьевой смеси газобетона |