Всякий способ хорош по-своему, и ни один не является идеальным. Сэдовей же предлагает: давайте вернёмся к химическим аккумуляторам. Только необычным – расплавленным. Вообще-то так называемые горячие аккумуляторы изобретены не вчера. Существует множество их разновидностей, обладающих завидными удельными показателями. Только вот рабочая температура в сотни градусов накладывает ограничения на условия применения, да и в плане долговечности создаёт проблемы. Мы говорим, к примеру, о таких известных технологиях, как серно-натриевые батареи (NaS battery) и родственные им аккумуляторы типа ZEBRA. Первые нашли применение как раз в качестве стационарных хранилищ промышленного электричества (но число таких станций можно пересчитать по пальцам), а вторые — в ряде мелкосерийных электромобилей. 17 крупных блоков серно-натриевых горячих батарей развивают мощность 34 мегаватта. В низком здании на заднем плане расположены преобразователи переменного/постоянного тока, через которые этот супераккумулятор подключён к сети. Данный комплекс – часть новой ветровой фермы Futamata, работающей в японской префектуре Aomori, а горячие батареи существенно сглаживают неравномерность выработки электричества от ветряков, покрывая дневной пик потребления и накапливая энергию ночью (фото с сайта techon.nikkeibp.co.jp). И те и другие виды обладают рядом врождённых недостатков, сдерживающих их распространение. А вот новый аккумулятор, прототип которого уже создан в массачусетском институте, должен оказаться втрое дешевле лучших сегодняшних батарей, намного долговечнее всех прочих и, главное, – существенно мощнее, радуются изобретатели. Такой аккумулятор размером с мусорный бак на 150 литров, рассуждает Сэдовей, мог бы стать непременным элементом "зелёного" дома, обеспечивая все его потребности в энергии даже на пике потребления, а подзаряжался бы он от переменчивых ветряков и солнечных панелей. Главное же – крупные собрания аккумуляторов нового типа могли бы запасать огромные количества энергии от альтернативных станций, питая целые посёлки и даже города. Так, прогнозирует американский учёный, новая аккумулирующая станция мощностью в 13 гигаватт (то есть — на мегаполис) заняла бы площадь всего в 60 тысяч квадратных метров. За счёт чего такие параметры? Эти батареи способны отдавать и принимать в десять раз больший ток, чем все существующие типы химических аккумуляторов, поясняет изобретатель. Всё дело в электродах. Вспомним, создатели, к примеру, литиево-ионных элементов как только не изощряются, чтобы поднять допустимый ток, проходящий через электроды. И материалы подбирают необычные, и добавки разные, и даже нанотехнологии подключают. Со свинцово-кислотными батареями дело обстоит схожим образом. В обычном аккумуляторе, например в свинцово-кислотном, материалы электродов накладывают ограничения на параметры впитываемого или отдаваемого тока. Они же во многом определяют срок службы устройства (иллюстрация Arthur Mount). И всё равно – слишком сильный ток может повредить устройство, попросту расплавив всю конструкцию. Сэдовей нашёл выход: пусть расплавленное состояние будет нормальным для всех частей батареи. Тогда ничего в ней "неожиданно" расплавиться не сможет и дело в шляпе. В расплавленных горячих аккумуляторах типа NaS или ZEBRA есть помимо корпусов и контактов по меньшей мере ещё один важнейший нерасплавленный элемент — твёрдый электролит (это специальная керамика, проводящая ионы натрия). А в аккумуляторе Сэдовея твёрдых частей во внутренностях вообще нет. Никаких. В этой батарее (не считая внешнего корпуса, что очевидно) всё жидкое — и электролит, и оба электрода! |