Основные виды солей 1.Бораты (оксобораты), соли борных кислот: метаборной НВО2, ортоборной Н3ВО3 и не выделенных в свободном состоянии полиборных. По числу атомов бора в молекуле делятся на моно-, ди, тетра-, гексабораты и т. д. Бораты называют также по образующим их кислотам и по числу молей В2О3, приходящемуся на 1 моль основного оксида. Так различные метабораты могут быть названы моноборатами, если содержат анион В(ОН)4 или цепочечный анион {ВО2}nn- диборатами - если содержат цепочечный сдвоенный анион { В2О3(OН)2}n2n- триборатами - если содержат кольцевой анион (В3О6)3-. Структуры боратов включают борокислородные группировки - “блоки”, содержащие от 1 до б, а иногда и 9 атомов бора например: Координационное число атомов бора 3 (борокислородные треугольные группировки) или 4 (тетраэдричные группировки). Борокислородные группировки - основа не только островных, но и более сложных структур - цепочечных, слоистых и каркасных полимеризованных. Последние образуются в результате отщепления воды в молекулах гидратированных боратах и возникновения мостиковых связей через атомы кислорода; процесс иногда сопровождается разрывом связи В—О внутри полианионов. Полианионы могут присоединять боковые группы - борокислородные тетраэдры или треугольники, их димеры или посторонние анионы. Аммоний, щелочные, а также и другие металлы в степени окисления +1 образуют чаще всего гидратированные и безводные метабораты типа МВО2, тетрабораты М2B4O7, пентабораты МB5O8, а также декабораты М4B10O17 • nH2O. Щелочноземельные и другие металлы в степени окисления + 2 дают обычно гидратированные метабораты, трибораты М2B6O11 и гексабораты МB6O10. а также безводные мета-, орто- и тетрабораты. Для металлов в степени окисления + 3 характерны гидратированные и безводные ортобораты МВО3. Бораты - бесцветные аморфные вещества или кристаллы (в основном с низко-симметричной структурой - моноклинной или ромбической). Для безводных боратов температуры плавления находятся в интервале от 500 до 2000 °С; наиболее высокоплавки метабораты щелочных и орто- и метабораты щелочноземельных металлов. Большинство боратов при охлаждении их расплавов легко образует стекла. Твердость гидратированных боратов по шкале Мооса 2-5, безводных-до 9. Гидратированные монобораты теряют кристаллизационную воду до ~180°С, полибораты -при 300-500°С; отщепление воды за счет групп ОН, координированных вокруг атомов бора, происходит до ~750°С. При полном обезвоживании образуются аморфные веществава, которыерые при 500-800°C в большинстве случаев претерпевают “боратовую перегруппировку” -кристаллизацию, сопровождающуюся (для полиборатов) частичным разложением с выделением В2О3. Бораты щелочных металлов, аммония и Т1(I) растворимы в воде (особенно мета- и пентабораты), в водных растворах гидролизуются (растворыры имеют щелочную реакцию). Большинство боратов легко разлагается кислотами, в некоторых случаях - при действии СО2; и SO2;. Бораты щелочно-земельных и тяжелых металлов взаимодействуют с растворами щелочей, карбонатов и гидрокарбонатов щелочных металлов. Безводные бораты химически более стойки, чем гидратированные. С некоторыми спиртами, в частности с глицерином, бораты образуют растворимые в воде комплексы. При действии сильных окислителей, в частности Н2О2, или при электрохимическом окислении бораты превращаются в пероксобораты. Известно около 100 природных боратов, являющихся в основном солями Na, Mg, Ca, Fe. Гидратированные бораты получают: нейтрализацией Н3ВО3 оксидами, гидроксидами или карбонатами металлов; обменными реакциями боратов щелочных металлов, чаще всего Na, с солями других металлов; реакцией взаимного превращения малорастворимых боратов с водными растворами боратов щелочных металов; гидротермальными процессами с использованием галогенидов щелочных металлов в качестве минерализующих добавок. Безводные бораты получают сплавлением или спеканием В2О3 с оксидами или карбонатами металлов или обезвоживанием гидратов; монокристаллы выращивают в растворах боратов в расплавленных оксидах, напр Вi2О3. Бораты используют: для получения других соединений бора; как компоненты шихты при производстве стекол, глазурей, эмалей, керамики; для огнестойких покрытий и пропиток; как компоненты флюсов для рафинирования, сварки и пайки металле”; в качестве пигментов и наполнителей лакокрасочных материалов; как протравы при крашении, ингибиторы коррозии, компоненты электролитов, люминофоров и др. Наибольшее применение находят бура и кальция бораты. 2.Галогениды, химические соединения галогенов с др. элементами. К галогенидам обычно относят соединения, в которых атомы галогена имеют большую электроотрицательность, чем др. элемент. Галогенидов не образуют Не, Ne и Аг. К простым, или бинарным, галогенидам ЭХn (n - чаще всего целое число от 1 у моногалогенидов до 7 у IF7, и ReF7, но может 6ыть и дробным, например 7/6 у Bi6Cl7) относят, в частности, соли галогеноводородных кислот и межгалогенные соединения (напр., галогенфториды). Существуют также смешанные галогениды, полигалогениды, гидрогалогениды, оксогалогениды, оксигалогениды, гидроксогалогениды, тиогалогениды и комплексные галогениды. Степень окисления галогенов в галогенидах обычно равна —1. По характеру связи элемент-галоген простые галогениды подразделяют на ионные и ковалентные. В действительности связи имеют смешанный характер с преобладанием вклада той или иной составляющей. Галогениды щелочных и щелочно-земельных металлов, а также многие моно- и дигалогениды др. металов - типичные соли, в которых преобладает ионный характер связи. Большинство из них относительно тугоплавки малолетучи, хорошо растворимы а воде; в водных растворах почти полностью диссоциируют на ионы. Свойствами солей обладают также тригалогениды редкоземельных элементов. Растворимость в воде ионных галогенидов, как правило, уменьшается от иодидов к фторидам. Хлориды, бромиды и иодиды Ag+, Сu+, Hg+ и Pb2+ плохо растворимы в воде. Увеличение числа атомов галогенов в галогенидах металлов или отношения заряда металла к радиусу его иона приводит к повышению ковалентной составляющей связи, снижению растворимости в воде и термической устойчивости галогенидов, увеличению от летучести, повышению окислит, способности и склонности к гидролизу. Эти зависимости наблюдаются для галогенидов металлов одного и того же периода и в ряду галогенидов одного и того же металла. Их легко проследить на примере термических свойств. Например, для галогенидов металлов 4-го периода температуры плавления и кипения составляют соответственно 771 и 1430°С для КС1, 772 и 1960°C для СаС12, 967 и 975°С для ScCl3, -24,1 и 136°С для TiCl4. Для UF3 температура плавления ~ 1500°С, UF4 1036°C, UF5 348°С, UF6 64,0 °С. В рядах соединений ЭХn при неизменном n ковлентность связи обычно увеличивается при переходе от фторидов к хлоридам и уменьшается при переходе от последних к бромидам и иодидам. Так, для АlF3 температура возгонки 1280°C, А1С13 180°С, температура кипения А1Вr3 254,8 °С, АlI3 407°С. В ряду ZrF4, ZrCl4 ZrBr4, ZrI4 температура возгонки равна соответственно 906, 334, 355 и 418°С. В рядах MFn и МС1n где М-металл одной подгруппы, ковалентность связи уменьшается с ростом атомной массы металла. Фторидов и хлоридов металлов с примерно одинаковым вкладом ионной и ковалентной составляющей связи немного. |