3.2. UP-MMT нанокомпозиты Производство UP-MMT нанокомпозитов реализуется два этапа. На первом используется технология смешивания, линейные цепи ненасыщенного полиэфира смешиваются со стирольными мономерами и слоистым силикатом. В ходе второго этапа используется технология отверждения, при котором начинается действие реакции сшивания осуществляющими разложение инициаторами. Ненасыщенные полиэфирные цепи, стирольные мономеры и нано-MMT смешиваются на протяжении 3 часов при 60 [градусах]C. Процентное содержание массы MMT в использованном UP-MMT нанокомпозите составляло 2%, 5%, 8% и 10%, соответственно. Затем смесь охлаждали до комнатной температуры. 1% по массе инициатора (MKPO) добавляли в смесь, затем смесь помешивали в течение 2 минут. Смесь заливали в формы, отверждали при комнатной температуре на протяжении 12 часов, а затем подвергали последующему отверждению при 120 [градусах]C на протяжении 4 часов. Дифракционные рентгенограммы (XRD) были получены с помощью использования рентгеновского диффрактомера Rigaku, снабженного излечением CuKa и неплоским графитовым кристалл-монохроматором. Образцы были получены с помощью нанесения предварительно внедренной смеси и нанокомпозита UP-MMT в листовой форме на предметное стекло. Все данные дифракционной рентгенографии собирались с помощью рентгеновского генератора ([лямбда] = 1.5406A). Использовался брэгговский закон ([лямбда] = 2d/sin[тета]) для осуществления расчета кристаллографического пространственного распределения. Для того, чтобы оценить изменение температуры перехода в стеклообразное состояние, [T.sub.g], которое связано с повышением концентрации MMT, был проведен дифференциальный сканирующий калориметрический (DSC) анализ с использованием General V4.1C DuPont 2000. Измерение осуществлялось при температурах от 30 [градусов]C до 300 [градусов]C с использованием скорости нагревания в 10 [градусов]C/мин в атмосфере азота. Термическое поведение определялось с помощью термогравиметрического анализатора (TGA). Было проведено микроскопическое исследованием с использованием просвечивающего электронного микроскопа (TEM) с ускоряющим напряжением 100 кв. 3.3. Полимербетон с использованием UP-MMT нанокомпозитов Определение прочности при растяжении осуществлялось в соответствии с ASTM D638M-91a при скорости перемещения поперечины 5 мм/мин. Цилиндры из полимербетона, которые использовались для определения прочности при сжатии и раскалывании, составляли 76 мм в диаметре и 152 мм в длину. Образцы испытывали в машине с гидравлической нагрузкой при постоянной нагрузке в 44,500 н/мин. Состав смеси полимербетона, дозированный по массе, был следующим: 11% смолы (MMT-UP), 45% высушенного в печи крупного агрегата, 33% высушенного в печи песка, а также 11% CaC[O.sub.3]. Модуль упругости при сжатии был сначала получен с помощью компрессометра с длиной измеряемого образца 76-мм с использованием двух диаметрально противоположных сторон. Модель упругости при сжатии рассчитывался там, где растяжение составляло 40% от максимального графика растяжения на напряжение--растяжение (нагрузка--прогиб). Упругие образцы смешивались и спрессовывались в стальные формы с размерами 50 x 50 x 305-мм. Перекрытия нагружались нагружением в третях пролёта с однородной скоростью 2225 н/мин. Образцы отливались, отверждались и испытывались при комнатной температуре. Испытание образцов производилось в течение 7 дней. Проводились испытания для того, чтобы определить воздействие температуры на прочность при сжатии PC, прочность при раскалывании, модуль упругости, и предел прочности при изгибе. После отверждения образцы помещали в камеру искусственного климата при нужной температуре на два дня, предшествующие испытаниям. Были выбраны следующие температуры: 15 [градусов]C, 25 [градусов]C, и 65 [градусов]C. Собственно испытание проводилось при комнатной температуре сразу же после извлечения образцов из камеры искусственного климата. |