Это выдвинутая концепция предельного концентрирования цементных систем тонкодисперсными порошками из пород осадочного, магматического и метаморфического происхождения, селективных по уровням высокого водоредуцирования к СП. Наиболее важные результаты, полученные в этих работах, состоят в возможности 5–15 кратного снижения расхода воды в дисперсиях при сохранении гравитационной растекаемости. Было показано, что совмещением реологически активных порошков с цементом можно усилить действие СП и получать высокоплотные отливки. Именно эти принципы реализованы в реакционно-порошковых бетонах с повышением плотности и прочности их (Reaktionspulver beton – RPB или Reactive Powder Concrete – RPC [см. Долгополов Н. Н., Суханов М. А., Ефимов С. Н. Новый тип цемента: структура цементного камня. // Строительные материалы. – 1994. – № 115]). Другим результатом является повышение редуцирующего действия СП с возрастанием дисперсности порошков [см. Калашников В. И. Основы пластифицирования минеральных дисперсных систем для производства строительных материалов: Диссертация в форме научного доклада на соискание степени докт. техн. наук. – Воронеж, 1996]. Это также используется в порошковых тонкозернистых бетонах путем увеличения доли тонкодисперсных составляющих за счет добавления к цементу микрокремнезема. Новым в теории и практике порошковых бетонов явилось использование мелкого песка фракции 0,1–0,5 мм, что сделало бетон тонкозернистым в отличие от обычного песчаного на песке фракции 0–5 мм. Проведенный нами расчет средней удельной поверхности дисперсной части порошкового бетона (состав: цемента – 700 кг; тонкого песка фр. 0,125–0,63 мм – 950 кг, базальтовой муки Sуд = 380 м2/кг – 350 кг, микрокремнезема Svд =3200 м2/кг – 140кг) при ее содержании 49 % от общей смеси с тонкозернистых песком фракции 0,125–0,5 мм показывает, что при дисперсности МК Sмк=3000м2/кг средняя поверхность порошковой части составляет Svд=1060м2/кг, а при Sмк=2000 м2/кг – Svд= 785 м2/кг. Именно на таких тонкодисперсных составляющих изготавливаются тонкозернистые реакционно-порошковые бетоны, в которых объемная концентрация твердой фазы без песка достигает 58–64 %, а вместе с песком – 76–77 % и мало уступает концентрации твердой фазы в суперпластифицированных тяжелых бетонах (Cv=0,80–0,85). Однако в щебеночных бетонах объемная концентрация твердой фазы за вычетом щебня и песка значительно ниже, что определяет высокую плотность дисперсной матрицы. Высокая прочность обеспечивается наличием не только микрокремнезема или дегидратированного каолина, но и реакционно-активного порошка из молотой горной породы. По литературным данным, преимущественно вводится летучая зола, бальтовая, известняковая или кварцевая мука. Широкие возможности в производстве реакционно-активных порошковых бетонов открывались в СССР и России в связи с разработкой и исследованием композиционных вяжущих низкой водопотребности Баженовым Ю. М., Бабаевым Ш. Т., КомаромА. А., Батраковым В. Г. , Долгополовым Н. Н.. Было доказано, что замена цемента в процессе помола ВНВ карбонатной, гранитной, кварцевой мукой до 50 % существенно повышает водоредуцирующий эффект. В/Т-отношение, обеспечивающее гравитационную растекаемость щебеночных бетонов по сравнению с обычным введением СП снижается до 13–15 %, прочность бетона на таком ВНВ-50 достигает 90–100 МПа. По существу, на основе ВНВ, микрокремнезема, мелкого песка и дисперсной арматуры можно получить современные порошковые бетоны. Дисперсно-армированные порошковые бетоны очень эффективны не только для несущих конструкций с комбинированным армированием предварительно-напряженной арматурой, но и для производства очень тонкостенных, в том числе пространственных архитектурных деталей. По последним данным, возможно текстильное армирование конструкций. Именно развитие текстильно-волоконного производства (тканевых) объемных каркасов из высокопрочных полимерных и щелочестойких нитей в развитых зарубежных странах явилось мотивацией разработки более 10 лет назад во Франции и Канаде реакционно-порошковых бетонов с СП без крупных заполнителей с особо мелким кварцевым заполнителем, наполненных каменными порошками и микрокремнеземом. Бетонные смеси из таких тонкозернистых смесей растекаются под действием собственного веса, заполняя полностью густую сетчатую структуру тканого каркаса и все сопряжения филигранной формы. «Высокая» реология порошковых бетонных смесей (ПБС) обеспечивает при содержании воды 10–12 % от массы сухих компонентов предел текучести ?0 = 5–15 Па, т.е. всего лишь в 5–10 раз выше, чем в масляных красок. При таком ?0 для его определения можно использовать миниареометрический метод, разработанный нами в 1995 г. Низкий предел текучести обеспечивается оптимальной толщиной прослойки реологической матрицы. Из рассмотрения топологической структуры ПБС, средняя толщина прослойки Х определяется по формуле: где – средний диаметр частиц песка; – объемная концентрация.
Для приведенного ниже состава при В/Т = 0,103 толщина прослойки будет 0,056 мм. De Larrard и Sedran установили, что для более мелких песков (d = 0,125–0,4 мм) толщина варьирует от 48 до 88 мкм. Увеличение прослойки частиц снижает вязкость и предельное напряжение сдвига и увеличивает текучесть. Текучесть может возрастать за счет добавления воды и введения СП. В общем виде влияние воды и СП на изменение вязкости, предельного напряжения сдвига и текучести неоднозначно (рис. 1).
|