Для того, чтобы стабилизировать температуру внутри автомобиля во время движения автомобиля во многих моделях используют системы кондиционирования; тем не менее, обеспечение мощности, достаточной для охлаждения, требует немалых энергозатрат. Можно сэкономить энергию, и значительно повысить комфорт в пассажирском салоне автомобиля за счет использования новых текстильных композитов, которые обладают уникальными терморегулирующими свойствами. Такие терморегулирующие свойства обеспечиваются применением материала с обратимыми фазами (РСМ), являющегося высокопроизводительным инструментом сохранения тепловой энергии. Материал с обратимыми фазами (PCM) Материал с обратимыми фазами (РСМ) обладает способностью менять свое физическое состояние в рамках определенного температурного диапазона. Когда в процессе нагревания достигается температура плавления, происходит фазовый переход из твердого в жидкое состояние. В ходе процесса плавления РСМ поглощает и сохраняет большое количество скрытой теплоты фазового перехода. Температура РСМ и окружающих его объектов остается почти постоянной на протяжении всего процесса. В ходе обратного процесса охлаждения скрытая теплота, которая сохраняется в РСМ, высвобождается в окружающую среду в пределах определенного температурного диапазона, и происходит обратный фазовый переход из жидкого состояния в твердое. В ходе такого процесса кристаллизации температура РСМ и окружающих его предметов остается постоянной. После того, как фазовый переход, завершится, продолжающийся процесс нагревания /охлаждения приводит к дальнейшему повышению /понижению температуры. Способность к такому поглощению или высвобождению большого количества скрытой теплоты без изменения температуры делает РСМ привлекательным для использовании в качестве подходящего средства хранения теплоты. Для того, чтобы сопоставить количество скрытой теплоты, поглощаемой РСМ в течение реального фазового перехода, с соответствующим количеством физической теплоты, которая обычно поглощается в ходе стандартного процесса нагревания, будет использоваться для сравнения процесс фазового перехода льда в воду. При расплавлении льда происходит поглощение примерно 335 дж. на г. скрытой теплоты. При последующем нагревании воды она поглощает только 4 дж. на г. физической теплоты, в то время как ее температура повышается на один градус Цельсия. Таким образом, воду необходимо нагревать с примерно 1 °C до примерно 84° C для того, чтобы обеспечить поглощение того же количества тепла, которое поглощается в ходе процесса плавления льда. Помимо льда (воды) известно более 500 натуральных и синтетических РСМ, таких как парафины и гидраты солей. Эти материалы отличаются друг от друга диапазонами температур фазового перехода и прочими параметрами сохранения скрытой теплоты. Подходящие места для применения компонентов из РСМ в пассажирском салоне автомобиля Для того, чтобы определить, где РСМ будут размещаться в пассажирском салоне автомобиля для осуществления теплового контроля внутри автомобиля, было проведено предварительное исследование развития температурного режима в различных местах пассажирского салона. В результате для применения РСМ были выбраны следующие места: • Потолок салона • Приборная панель • Сидения. Использование PCM для изготовления потолков автомобилей При изготовлении потолков используются не воспламеняющийся РСМ из гидрата солей, который, внедряется в полимерную пленку толщиной в один миллиметр. Был разработан текстильный полимер, в котором пленка из РСМ располагается между декоративным слоем материала, находящимся в нижней части обивки потолка, и промежуточным пенопластовым слоем. PCM начинает поглощать скрытую теплоту, как только температура поднимается выше 30 °C. PCM, интегрированный в обшивку потолка, обладает способностью поглощать скрытую теплоту примерно в 240 кДж. Такая величина поглощения скрытой теплоты новым, содержащим РСМ потолком, равна величине поглощения теплоты обычным потолком, температура которого повышается примерно на сто градусов Цельсия. В закрытом пассажирском салоне горячий воздух, который накапливается, в основном, за счет воздействия солнечных лучей, перемещается в верхнюю часть, и нагревает потолок. В результате, температура потолка непрерывно повышается. При нанесении PCM на потолок, он поглощает теплоту без дальнейшего повышения температуры до тех пор, пока не будет достигнута точка плавления РСМ. За счет поглощения скрытой теплоты РСМ существенно замедляется обычное повышение температуры потолка. Способность РСМ осуществлять терморегулирование позволяет сохранять температуру внутри пассажирского салона на комфортном уровне без необходимости использования подачи энергии извне. Это особенно выгодно, когда машина припаркована на открытом воздухе, и подвергается воздействию прямых солнечных лучей. В течение всего парковочного периода пассажирский салон, в потолке которого использован РСМ, не перегревается. В результате необходима более низкая мощность охлаждения на стадии начала движения, что особенно способствует энергосбережению. Были произведены расчеты для автомобиля среднего размера с объемом салона примерно 2.5 м³ и площадью потолка примерно 1.5 м². Кроме того, рассматривалась установка для кондиционирования воздуха с приблизительным потоком 250 кг в час и начальной температурой воздуха примерно 9 °C. На основе этих принятых параметров было вычислено энергосбережение примерно 25%. Тепло, накопленное РСМ, может быть выпущено через крышу в окружающую среду во время движения автомобиля или же в результате его охлаждения в ночное время. Температурные изменения в потолках с РСМ и без него на протяжении периода парковки в 60 минут и в последующие 60 минут, когда автомобиль находится в движении, даны на рисунке 1.
Рисунок 1: Изменение температуры в нижней части потолка |