Для исследования in situ кинетики роста толщины фторированного слоя был использован упомянутый выше интерференционной метод. С целью удаления фтористого водорода (продукта реакции) из газовой фазы (HF ингибирует процесс фторирования) во всех экспериментах (если специально не оговорено) в реакционную зону вводили прессованную таблетку фторида натрия: NaF + HF = NaHF2 (тв.). Для всех исследованных полимеров (за исключением композиционных мембран на основе поликарбонатсилоксана) и всех использованных для фторирования смесей наблюдалась корневая зависимость толщины фторированного слоя от времени обработки t: δF=A*t0,5 + const = B*(pF)k*t0.5 + const (1) где величина A зависит от парциальных давлений F2, O2, He, N2 и HF (pF, pО, pHe, pN, и pHF) и температуры проведения процесса. Величиной постоянного члена (const) можно пренебречь для большинства полимеров, за исключением полиэтилена низкой и высокой плотности и поливинилфторида. Значения величин B и k для различных полимеров. Как видно из рисунка 1, демонстрирующего продолжительность формирования фторированного слоя толщиной 1 мкм при давлении фтора 0,1 бар при комнатной температуре, в зависимости от природы полимера это время варьируется в пределах от 20 мин до 12 ч. Рис.1 Время, необходимое для формирования фторированного слоя толщиной 1 мкм на различных полимерах при давлении фтора 0,1 бар при комнатной температуре Показано, что наличие гелия, азота, аргона и диоксида углерода в обычно применяемой в промышленности фторирующей смеси слабо влияет на скорость фторирования при неизменном парциальном давлении фтора вплоть до смесей с содержанием фтора 2% (об.). Для некоторых полимеров зависимость δF от pF близка к корневой (см. формулу 1), соответствующей идеальному случаю, когда газопроницаемость модифицированного полимера не зависит от толщины фторированного слоя. Однако в большинстве случаев наблюдаются отклонения зависимости δF—pF от корневой, что может свидетельствовать о протекании во фторированном слое полимера реакций «догорания», т.е. сначала происходит процесс превращения основной массы полимерного слоя в не полностью фторированный полимер, а затем протекают более медленные процессы, как фторирования, так и с участием долгоживущих радикалов. Кислород оказывает ингибирующее влияние на скорость формирования фторированного слоя. Степень ингибирования зависит от природы полимера. Фтористый водород также замедляет скорость фторирования. Так, например, при фторировании полиэтилентерефталата добавление всего лишь 3% (об.) фтористого водорода ко фтору приводит к уменьшению коэффициента A (см. формулу 1) в 1,4 раза. Скорость роста толщины фторированного слоя возрастает с повышением температуры. Если зависимость величины A от температуры представить в виде зависимости A~A0•exp(–Eа/RT), то энергия активации Ea составит 13,4 кДж/моль для полиэтилена низкой плотности (0,918 г/см3), 28,1 и 34,2 кДж/моль для полиэтилена высокой плотности (0,945 и 0,949 г/см3). Средняя плотность фторированного слоя поливинилтриметилсилана, полистирола, полиэтилентерефталата, полифениленоксида не зависит от его толщины в интервале 0,5—10 мкм и существенно превышает плотность исходного полимера (см. таблицу 1). Плотность фторированного слоя полиимида зависит от его толщины и возрастает до ~1,9 г/см3 при увеличении δF до 5—8 мкм. Для сравнения: плотность политетрафторэтилена составляет 2,12—2,28 г/см3. Во фторированных при комнатной температуре и выше полиэтилене, полистироле, полифениленоксиде, поливинилтриметилсилане обнаружены долгоживущие пероксидные RO2 и фторсодержащие радикалы, концентрация которых уменьшается в два раза за несколько часов в зависимости от природы полимера. Пероксидные радикалы образуются за счет кислорода во фторирующей смеси, адсорбированного полимером и стенками реактора, и воды. При фторировании полиэтилена низкой плотности и полистирола радикалы начинают образовываться уже при температуре 77 К, однако в случае полиэтилена низкой плотности их количество через несколько минут выходит на стационарный уровень, что, очевидно, связано с наличием активационного барьера в реакциях продолжения цепи. Кинетика гибели радикалов во фторированных полимерах исследовалась при комнатной температуре, а для различных типов полиэтилена низкой плотности также при температуре 55—650С. Для процесса фторирования исследованных полимеров на период первых 5—10 ч его протекания при температуре 295 К скорость гибели радикалов может быть аппроксимирована зависимостью [R]/[R0]=1/(1+а*t) (2) где [R]и [R0] — концентрация радикалов в момент времени t и в начальный момент времени, соответственно; a — расчетный коэффициент. В предположении механизма бимолекулярной реакции гибели радикалов скорость гибели радикалов будет иметь выражение [R]/[R0]=(1+2k2*[R0]*t)–1 (3) где k2 – константа скорости процесса. На основе вышеприведенных данных можно сделать вывод о том, что процесс фторирования полиэтилена низкой и высокой плотности, полиимида, полифениленоксида и поливинилтриметилсилана протекает по радикально-цепному механизму. Обычно в качестве реакции инициирования предлагается диссоциация молекулярного фтора, однако, эта реакция эндотермична (163,4 кДж/моль при 298 К). Вместе с тем есть ряд экзотермических реакций с участием фтора, которые вполне могут быть ответственными за процесс инициирования фторирования полимеров. Среди них можно выделить экзотермические реакции между молекулярным фтором и мономерными звеньями полимера, например со звеньями –CH2– в случае полиэтилена, и реакции между молекулярным фтором и двойными (сопряженными) C=C связями, присутствующими, например, в бензольных кольцах в полистироле и полифениленоксиде, либо входящими в молекулы технологических примесей. Поэтому реакция термической диссоциации фтора едва ли является основной реакцией, ответственной за инициирование цепного процесса прямого фторирования полимеров. Таблица 1: Плотность и показатель преломления исходных и фторированных полимеров Полимер | pv, г/см3 | pv, г/см3 | nDv | nDf | Полиэтилентерефталат | 1,46 | 1,75 | | | Полистирол | 1,05 | 2,05 | 1,59 | 1,366 | Поливинилтриметилсилан | 0,85 | 1,73 | 1,4925 | 1,376 | Полифениленоксид мол. масса 34000 | 1,07 | 1,72 | | 1,3730 | Полифениленоксид мол. масса 24400- | | | | 1,3808 | Полиимид | | | 1,614 | 1,41 |
|