Ферриты Ферриты представляют собой неметаллические магнитные материалы, изготовленные из смеси специально подобранных окислов металлов с окисью железа. Название феррита определяется названием двухвалентного металла, окисел которого входит в состав феррита. Так, если в состав феррита входит окись цинка, то феррит называется цинковым; если в состав материала добавлена окись марганца — марганцевым. В технике находят применение сложные (смешанные) ферриты, имеющие более высокие значения магнитных характеристик и большее удельное сопротивление по сравнению с простыми ферритами. Примерами сложных ферритов являются никель-цинковый, марганцево-цинковый и др. Все ферриты — вещества поликристаллического строения, получаемые из окислов металлов в результате спекания порошков различных окислов при температурах 1100-1300° С. Ферриты могут обрабатываться только абразивным инструментом. Они являются магнитными полупроводниками. Это позволяет применять их в магнитных полях высокой частоты, т. к. потери у них на вихревые токи незначительны. Полупроводниковые материалы и изделия К полупроводникам относится большое количество материалов, отличающихся друг от друга внутренней структурой, химическим составом и электрическими свойствами. Согласно химическому составу, кристаллические полупроводниковые материалы делят на 4 группы: 1. материалы, состоящие из атомов одного элемента: германий, кремний, селен, фосфор, бор, индий, галлий и др.; 2. материалы, состоящие из окислов металлов: закись меди, окись цинка, окись кадмия, двуокись титана и пр.; 3. материалы на основе соединений атомов третьей и пятой групп системы элементов Менделеева, обозначаемые общей формулой и называемые антимонидами. К этой группе относятся соединения сурьмы с индием, с галлием и др., соединения атомов второй и шестой групп, а также соединения атомов четвертой группы; 4. полупроводниковые материалы органического происхождения, например полициклические ароматические соединения: антрацен, нафталин и др. Согласно кристаллической структуре, полупроводниковые материалы делят на 2 группы: монокристаллические и поликристаллические полупроводники. К первой группе относятся материалы, получаемые в виде больших одиночных кристаллов (монокристаллы). Среди них можно назвать германий, кремний, из которых вырезают пластинки для выпрямителей и других полупроводниковых приборов. Вторая группа материалов — это полупроводники, состоящие из множества небольших кристаллов, спаянных друг с другом. Поликристаллическими полупроводниками являются: селен, карбид кремния и пр. По величине удельного объемного сопротивления полупроводники занимают промежуточное положение между проводниками и диэлектриками. Некоторые из них резко уменьшают электрическое сопротивление при воздействии на них высокого напряжения. Это явление нашло применение в вентильных разрядниках для защиты линий электропередачи. Другие полупроводники резко уменьшают свое сопротивление под действием света. Это используется в фотоэлементах и фоторезисторах. Общим свойством для полупроводников является то, что они обладают электронной и дырочной проводимостью. Электроугольные изделия (щетки для электрических машин) К данного рода изделиям относятся щетки для электрических машин, электроды для дуговых печей, контактные детали и др. Электроугольные изделия изготовляют методом прессования из исходных порошкообразных масс с последующим обжигом. Исходные порошкообразные массы составляют из смеси углеродистых материалов (графит, сажа, кокс, антрацит и пр.), связующих и пластифицирующих веществ (каменноугольные и синтетические смолы, пеки и пр.). В некоторых порошкообразных массах связующего нет. Щетки для электрических машин бывают графитными, угольно-графитными, электрографитированными, металло-графитными. Графитные щетки изготовляют из натурального графита без связующего (мягкие сорта) и с применением связующего (твердые сорта). Графитные щетки отличаются мягкостью и при работе вызывают незначительный шум. Угольно-графитные щетки производят из графита с добавлением других углеродистых материалов (кокс, сажа), с введением связующих веществ. Полученные после термической обработки щетки покрывают тонким слоем меди (в электролитической ванне). Угольно-графитные щетки обладают повышенной механической прочностью, твердостью и малым износом при работе. Электрографитированные щетки изготовляют из графита и других углеродистых материалов (кокс, сажа), с введением связующих веществ. После первого обжига щетки подвергают графитизации, т. е. отжигу при температуре 2500—2800° С. Электрографитированные щетки обладают повышенной механической прочностью, стойкостью к толчкообразному изменению нагрузки и применяются при больших окружных скоростях. Металло-графитные щетки производят из смеси порошков графита и меди. В некоторые из них вводят порошки свинца, олова или серебра. Эти щетки отличаются малыми значениями удельного сопротивления, допускают большие плотности тока и имеют малые переходные падения напряжения. C текущей ситуацией и прогнозом развития российского рынка эпоксидных и полиэфирных смол можно познакомиться в отчетах Академии Конъюнктуры Промышленных Рынков «Рынок эпоксидных смол в России» и «Рынок полиэфирных смол в России». www.newchemistry.ru |