Следует отметить, что изучение механизма кристаллизации полимеров продолжается до сих пор, и существует несколько теорий, объясняющих этот процесс. Тем не менее, абсолютно точно известно, что для кристаллизации полимеров необходимо следующее: • Молекулярная структура должна быть достаточно регулярной, чтобы образовывать кристаллы • Температура кристаллизации должна быть ниже температуры плавления и существенно выше температуры стеклования Процесс кристаллизации полимеров состоит из 2-х основных стадий - стадии формирования первичных зародышей и последующего роста кристаллов, образовавшихся на них. Зародышами кристаллизации могут служить любые микронеоднородности - агрегаты макромолекул, сохраняющиеся в расплаве при температурах, значительно превышающих температуру плавления, или посторонние микровключения (остатки катализатора, пыль и т.п.). Рост сферолитов продолжается до тех пор, пока фронт растущего кристалла не столкнётся с фронтом соседнего растущего кристалла. Скорость роста сферолитов возрастает с понижением температуры, и достигает максимума примерно в середине между температурой плавления и стеклования, а затем падает вследствие снижения подвижности полимерных цепей. На скорость роста кристаллов также влияют молекулярная масса и молекулярно-массовое распределение (ММР) полимера. В одной из работ итальянских исследователей было обнаружено, что скорость роста кристалла существенно замедлялась с ростом молекулярной массы полимера, в то время как скорость образования зародышей (скорость нуклеации) существенно возрастала при снижении молекулярной массы и увеличением ММР. Похожие закономерности наблюдались и при исследовании ПЭТ. Таким образом, становится очевидным, что размер кристаллитов в большой степени зависит от количества зародышей кристаллизации. Именно на этом и основано действие нуклеирующих добавок, которые создают в расплаве полимера большое количество зародышей, что приводит к практически одновременному образованию большого количества мелких кристаллитов, не имеющих достаточного пространства для роста. Хорошо известно, что чем меньше размер сферолита, тем выше физико-механические и оптические свойства полимера. При переработке полимеров расплав подвергается воздействию высокого давления и сдвиговых напряжений. Многочисленные эксперименты прямо подтверждают влияние этих двух факторов на процесс кристаллизации аморфно-кристаллических полимеров. Доказано, что высокое давление вынуждает полимерные цепи укладываться плотнее. Более того, рост давления приводит к повышению температуры плавления. Например, температура плавления полипропилена растёт от 1700С при атмосферном давлении до 1900С при давлении 500 бар. В лабораторных условиях, при давлениях, существенно превышающих развивающиеся при переработке, возможно получение кристаллов с вытянутыми цепями. Существует множество методов определения степени кристалличности полимерных материалов - дилатометрия, дифференциальная сканирующая калориметрия, рентгеновская, ИК и Рамановская (комбинационное рассеяние) спектрометрия. Для определения степени кристалличности образца Хс необходимо измерить его энтальпию ΔHf и сравнить с энтальпией плавления для полностью кристаллического полимера ΔHf100%. Степень кристалличности затем определяется из соотношения: Хс = (ΔHf / ΔHf100%) * 100%. Энтальпия плавления полностью кристаллического полимера ΔHf100% равна разности между кривыми энтальпии для полностью аморфного и полностью кристаллического материала. ΔHf100% не может быть определена экспериментально, и рассчитывается из данных, полученных рентгеноструктурными методами. Для полипропилена эта величина равна 207 Дж/г, для полиэтилена 293 Дж/г. Таблица 1. | Температура плавления Тm и степень кристалличности Хс некоторых полимеров. | Полимер | Тm, 0С | Хс, % | ПЭНП | 102-113 | < 60 | ПЭВП | 120-128 | 70-80 | ПП изотактический | 165-172 | 63-75 | ПЭТ | 265-275 | <50 | ПА-6 | 215-230 | 50 | ПА-6,6 | 268-275 | 70 |
Следует отметить большое влияние температурной предыстории полимера на свойства готового изделия, которой обычно пренебрегают. Промышленно выпускаемые полимеры, перед тем, как попасть в цех переработки в изделия, обычно подвергаются множеству термических и сдвиговых воздействий, таких как компаундирование с различными стабилизирующими добавками или наполнителями и грануляция. Количество и размер агрегатов макромолекул, служащих зародышами кристаллизации, зависит от времени пребывания материала, температуры переработки и температуры предыдущего цикла кристаллизации.
|