Полилактид Полилактид (PLA) привлекает серьезное внимание благодаря тому, что он производится на основе полученных из растений ресурсов. Также он обладает свойствами, позволяющими использовать его в качестве замены для полиолефинов (например, при упаковке), однако он уступает метаболитам. Недавно этот материал пережил ренессанс, когда ряд компаний начало производить его. В процессе производства PLA сырье на основе зерна или сахара обрабатывается для создания декстрозы, которая впоследствии подвергается брожению для выработки молочной кислоты. Эта кислота при помощи термических и каталитических методов преобразовывается в свой циклический димер – лактид. Если использовать подходящий реактивный катализатор, то лактид проходит полимеризацию с раскрытием цикла, благодаря которой создается PLA. Полученный в результате пластик обладает свойствами, сходными со свойствами полиолефинов и полистиролом. Его можно преобразовать в различные продукты, главным образом из области упаковок и оптоволокон. После использования полимер посредством гидролиза может разрушиться и преобразоваться в молочную кислоту, и после этого, через метаболизм, распадается на углекислый гад и воду. Этот процесс может оказаться достаточно гибким в условиях стандартного промышленного компостирования, однако следует отметить, что при более низких температурах процесс разрушения происходит очень медленно. PLA успешно применяется в ряде областей, которые были традиционно заняты полимерами на основе нефти. Тем не менее, использование PLA и материалов, имеющих отношение к PLA, в более значительных масштабах некоторым образом сдерживается. Два свойства, в некоторой степени ограничивающие PLA, - это сравнительно низкая температура стеклования и низкая ударная вязкость. Более того, коммерчески используемые катализаторы/инициаторы для производства PLA, пусть и полезные, используются незначительно; новые катализаторы для полимеризации лактида и других циклически сложных эфиров могут значительно увеличить степень контроля за процессом полимеризации. Решая эту задачу, группа Платела изучает прогресс в процессе синтеза биосовместимых (то есть, нетоксичных) инициаторов для полимеризации лактида. Ключевыми параметрами инициатора являются скорость полимеризации, контроль молекулярного веса, а также регулирование стереобаланса. К другим желательным свойствам относятся низкая стоимость, устойчивость, распространенность, отсутствие цвета или запаха в конечном продукте, а также низкая токсичность. В течение последнего десятилетия огромные усилия прилагались для разработки новых катализаторов для контролируемой полимеризации лактида и других циклически сложных эфиров. Появилось несколько очень важных обзоров. Множество исследований сосредоточены на использовании неорганических комплексов в процессе полимеризации циклически сложных эфиров с раскрытием цикла. Эти комплексы обычно действуют посредством так называемого механизма координации-введения, в котором катализатор активирует мономер для агрессивного воздействия алкоксидных лигандов внутри того же самого комплекса. Именно поэтому сообщество использует термины «катализатор» и «инициатор» попеременно. Предпринимались попытки детально разобраться в этом механизме, появилось несколько отчетов о чрезвычайно активных катализаторах. Например, комплексы -дикетиминат алкоксида металла (M=Mg, Zn и Ca), феноксильные диаминовые этилаты цинка и гомолептические феноляты иттрия могут осуществлять полимеризацию лактида на очень высокой скорости (Рис. 1). Рисунок 1. Структуры типичных инициаторов/катализаторов, которые демонстрируют очень высокую скорость полимеризации лактида. Ar=2,6-iPr2C6H3 or 2,6-Pr2C6H3 or 2,6-Et2C6H3, X=OiPr.
|