ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ОКОННЫХ КОНСТРУКЦИЙ |
Программа энергосбережения в строительстве и эксплуатации зданий направлена на всемерное снижение потребления энергии, повышение энергоэффективности зданий. Большую роль при этом играют светопрозрачные ограждения – окна, витражи и другие, поскольку современный уровень их теплозащиты значительно уступает теплозащите стеновых ограждающих конструкций зданий и теплопотери через светопрозрачные ограждающие конструкции доходят до 40% от всех теплопотерь здания. |
При этом теплопередача в наружных ограждающих конструкциях осуществляется по трем направлениям: теплопроводность, конвекция и тепловое излучение. В непрозрачных стеновых конструкциях ограничение теплопередачи осуществляется в основном в соответствии с принципами теплопроводности и с использованием теплоизоляционных материалов (пенопласта, стекловолокна, пенополиуретана и др.)
В настоящее время в России применяются следующие основные способы повышения энергоэффективности светопрозрачных конструкций: - переход в стеклопакетах на теплоизоляционные дистанционные рамки; В светопрозрачных конструкциях (СПК) при степени остекления от 0,6 и выше тепловые потери связаны в большей степени с тепловым излучением и конвективным теплообменом. В связи с этим при разработке и проектировании СПК большое внимание уделяется мероприятиям по ограничению конвективной и лучистой составляющей теплопередачи. Так, например, при ограничении размеров полостей в профильных системах и снижении конвективной составляющей теплопередачи можно добиться существенного увеличения термического сопротивления светонепрозрачного элемента СПК. Как показывает практика эксплуатации и расчеты, замена трехкамерного ПВХ-профиля на пятикамерный позволяет повысить теплозащитные качества светонепрозрачного участка СПК более чем 15%. А при применении в стеклопакетах мягкого теплоотражающего покрытия и замещении в межстекольном пространстве воздуха на криптон позволяет повысить теплозащитные качества светопрозрачного участка до 3 и более раз. Кроме того, замена алюминиевой дистанционной рамки на менее теплопроводную рамку, например из термикса, может существенно повысить температуру поверхности краевой зоны.
Трехкамерный ПВХ-профильНа рис. 1 представлена изотерма по сечению трехкамерного ПВХ-профиля со стальным армирующим профилем, заполненным калибровочной панелью, при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,55 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция. При расчете камеры в профиле приняты как замкнутые воздушные прослойки. Коэффициент теплопроводности ПВХ принят равным 0,17 Вт/м2 °С, коэффициент теплопроводности стального армирующего профиля – соответственно 50 Вт/м2 °С, коэффициент теплопроводности резинового уплотнителя – соответственно 0,24 Вт/м2 °С. Пятикамерный ПВХ-профильНа рис. 2 представлена изотерма по сечению пятикамерного ПВХ-профиля со стальным армирующим профилем, заполненного калибровочной панелью, при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,64 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция, что на 16% превышает сопротивление теплопередаче трехкамерной системы рама + створка. При расчете характеристики материалов профиля приняты такие же, как и для трехкамерного профиля.
Стеклопакет заполненный воздухомНа рис. 3 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного осушенным воздухом при перепаде температур -20°С – +20°С. При расчете приняты нормативные значения сопротивлений теплопереходу на границе воздух – стекло, а коэффициент теплопроводности стекла принят равным 1,0 Вт/м2 °С. Сопротивление теплопередаче по центру исследованного стеклопакета составило 1/1,86 = 0,54 (м2 °С/Вт).
Стеклопакет заполненный аргономНа рис. 4 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного аргоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущем расчете. Сопротивление теплопередаче по центру исследованного стеклопакета составило 0,59 (м2°С/Вт). Замещение осушенного воздуха на аргоновую смесь позволило повысить теплозащитные качества рассмотренного СПД до 9%.
Стеклопакет заполненный криптоновой смесьюНа рис. 5 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило 0,65 (м2 °С/Вт). Замещение осушенного воздуха на криптоновую смесь в СПД с обычными стеклами позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 0,65 (м2 °С/Вт) – более чем на 20%.
Стеклопакет со стеклами с мягкими покрытиямиНа рис. 6 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с мягкими покрытиями и заполненного осушенным воздухом. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило 0,96 (м2 °С/Вт). Использование в СПД двух стекол с мягким покрытием позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 0,96 (м2 °С/Вт) – более чем на 75%.
Стеклопакет со стеклами с мягкими покрытиями и криптоновой смесьюНа рис. 7 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с мягкими покрытиями и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило 1,74 (м2 °С/Вт). Использование в СПД двух стекол с мягким покрытием и одновременным замещением осушенного воздуха на криптоновую смесь в СПД позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 1,74 (м2 °С/Вт) – более чем в три раза.
Стеклопакет с алюминиевыми дистанционными рамкамиНа рис. 8 представлены изотермы стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с алюминиевыми дистанционными рамками. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Коэффициент теплопроводности алюминиевого сплава принят равным 160 Вт/м °С. Температура на поверхности стеклопакета в зоне алюминиевой дистанционной рамки при tн= -20°С и tв= +20оС составляет не более 0,2°С (недопустимую всеми действующими нормативными документами).
Стеклопакет с дистанционными рамками из термиксаНа рис. 9 представлены изотермы стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с дистанционными рамками из термикса. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Коэффициент теплопроводности термикса принят равным 0,17 Вт/м °С. Температура на поверхности стеклопакета в зоне дистанционной рамки при tн= -20°С и tв= +20°С составляет более 10°С. Таким образом, замена в рассматриваемой СПД алюминиевой дистанционной рамки на менее теплопроводную рамку из термикса повысило температуру в краевой зоне стеклопакета на 10°С. |
Трехкамерный ПВХ-профиль со стальным армированиемНа рис. 10 представлена изотерма по сечению трехкамерного ПВХ-профиля со стальным армирующим профилем, заполненного стеклопакетом СПД 4-10-4-10-4 с алюминиевой дистанционной рамкой, при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,46 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция. При расчете камеры в профиле приняты как замкнутые воздушные прослойки. Коэффициент теплопроводности ПВХ принят равным 0,17 Вт/м °С, коэффициент теплопроводности стального армирующего профиля – соответственно 50 Вт/м °С, коэффициент теплопроводности резинового уплотнителя – соответственно 0,24 Вт/м °С. Температура на поверхности рамы в краевой зоне составляет не более 5,4°С и не всегда удовлетворяет требованиям действующих нормативных документов.
Пятикамерный ПВХ-профиль со стальным армированием и стеклопакетом с дистанционной рамкой из термиксаНа рис. 11 представлена изотерма по сечению пятикамерного ПВХ-профиля со стальным армирующим профилем, заполненного стеклопакетом СПД 4-10-4-10-4 с дистанционной рамкой из термикса при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,59 (м2 °С/Вт) с нормативными сопротивлениями теплопереходу на границе воздух – конструкция. При расчете, как и в предыдущем расчете, камеры в профиле приняты как замкнутые воздушные прослойки. Коэффициент теплопроводности ПВХ принят равным 0,17 Вт/м °С, коэффициент теплопроводности стального армирующего профиля – соответственно 50 Вт/м °С, коэффициент теплопроводности резинового уплотнителя – соответственно 0,24 Вт/м °С. Температура на поверхности рамы в краевой зоне составляет 10,9°С и удовлетворяет требованиям действующих нормативных документов для большинства климатических районов РФ.
Стеклопакет с обычными стеклами заполненном воздухомНа рис. 12 представлены результаты теплотехнического расчета оконного блока со стеклопакетом СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного осушенным воздухом при перепаде температур -20°С – +20°С. При расчете приняты нормативные значения сопротивлений теплопереходу на границе воздух – стекло, а коэффициент теплопроводности стекла принят равным 1,0 Вт/м °С. Приведенное сопротивление теплопередаче такого оконного блока составило не более 0,51 (м2 °С/Вт) при степени остекления 0,68.
Стеклопакет со стеклами с мягким покрытиемНа рис. 13 представлены результаты теплотехнического расчета оконного блока со стеклопакетом СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с мягкими покрытиями и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Приведенное сопротивление теплопередаче такого оконного блока составило 1,04 (м2 °С/Вт). Принятые мероприятия по повышению теплозащитных качеств оконного блока из ПВХ-профиля позволили в несколько раз улучшить его энергоэффективность.
«Теплая» алюминиевая фасадная конструкцияНа рис. 14 (см. Журнал "Окна. Двери. Фасады" № 2 ( 41 ) 2011, стр. 74) представлена изотерма по сечению теплой алюминиевой фасадной системы со стеклопакетом и алюминиевой дистанционной рамкой. Сопротивление теплопередаче по раме составляет всего 0,29 (м2 °С/Вт), и такое техническое решение не может быть рекомендовано для большинства климатических районов РФ.
«Теплая» алюминиевая фасадная конструкция со стеклопакетом с дистанционной рамкой из термиксаНа рис. 15 представлена изотерма по сечению теплой алюминиевой фасадной системы со стеклопакетом и дистанционной рамкой из термикса. Сопротивление теплопередаче по раме рассматриваемой фасадной системы при замене алюминиевой дистанционной рамки на термикс увеличивается с 0,29 (м2 °С/Вт) до 0,49 (м2 °С/Вт), и в сочетании с энергосберегающим стеклопакетом это может быть рекомендовано для большинства климатических районов РФ.
«Теплая» алюминиевая фасадная конструкция со стеклопакетом заполненным криптоновой смесьюНа рис. 16 представлены результаты теплотехнического расчета СПК из теплой фасадной системы со стеклопакетом 4-10Kr-4И-10Kr-4И, заполненного криптоновой смесью и с дистанционной рамкой из термикса. Приведенное сопротивление теплопередаче СПК из алюминиевой профильной фасадной системы со стеклопакетом 4-10Kr-4И-10Kr-4И, заполненного криптоновой смесью и с дистанционной рамкой из термикса, составляет уже 0,95 (м2 °С/Вт) при степени остекления 0,68.
Итоги исследования и рекомендацииПриведенные выше результаты теплофизических исследований дают основание полагать, что есть все возможности разработать энергоэффективные СПК с сопротивлением теплопередаче 1,0 и более единиц.
С анализом текущего и потенциального спроса и предложения на российском рынке продуктов переработки ПВХ Вы можете познакомиться в отчетах Академии Конъюнктуры Промышленных Рынков: «Рынок суспензионного ПВХ в России».
Журнал "Окна Двери Фасады" www.odf.ru |