ПЛАСТМАССОВЫЕ КОМПОЗИТЫ для космоса и авиации | |||||||||||||||||||||||||
Использование пластмассовых композитов в авиационно-космической промышленности в былые времена ограничивалось внешней обшивкой самолетов, носками крыла и задними кромками крыла, бортовыми кухнями воздушного судна и прочими применениями для производства не конструкционных деталей. Но в наши дни пластмассовые композиты используются для производства таких несущих конструкций, как крылья, фюзеляжи и поперечные балки… | |||||||||||||||||||||||||
Заменяя алюминий и другие металлы при производстве деталей самолетов на высокоэффективные композиты низкой плотности, создатели самолетов надеются снизить массу своих самолетов. А это может привести к сокращению платы за топливо для клиентов самолетов коммерческой авиации, которые постоянно сталкиваются с ростом конкуренции и беспрецедентным повышением топливных затрат. Таблица 1: Сопоставление физических свойств различных фторополимеров.
Несмотря на существенные преимущества, которые дает их использование, пластмассовые композиты все еще встречаются с препятствиями на пути своего продвижения на авиационно-космическую арену. Во-первых, они зачастую дороже, чем сопоставимые металлические материалы. Они также испытывают конкуренцию со стороны новых облегченных сплавов металлов и композитов. Кроме того, сертификация пластмассовых композитов – или любых иных новых материалов – для использования при производстве несущих конструкций самолетов, представляет собой долгий процесс, на который требуются месяцы и годы дорогостоящих испытаний безопасности. Рис. 1. В конструкции Airbus A380, самолета коммерческой авиации, который должен быть введен в коммерческую эксплуатацию в 2008г., будут широко использоваться полимерные композиты во всех частях конструкции. Материалы Рис. 2. Почти 50% материалов, из которых производится самолет Boeing 787, будут изготавливаться из композитов (схема применения материалов). Для производства высококачественных композитов, используемых для конструкционных применений при производстве самолетов, обычно используют эпоксидные и фенольные смолы. Для армирования, как правило, используют углеродное волокно. Чаще всего такое волокно изготавливается путем воздействия очень высоких температур на нити из полиакрилонитрила (PAN). Рис. 3. Недавно завершенный компанией Boeing цельный полномасштабный композитный фюзеляж для 787. Габариты конструкции почти 7 м в длину и 6 м в ширину. Наслаивание с предварительной пропиткой Рис. 4. Наслаивание используется для производства композитного хвостового стабилизатора для штурмовика военно-морского флота США F/A-18E/F. Метод наслаивания предварительно пропитанных углеродных/эпоксидных слоев используется также для создания отсека вертикального хвостового оперения нового реактивного самолета на 555 мест Airbus A380, который станет самым большим в мире самолетом коммерческой авиации, когда он вступит в эксплуатацию в 2008г. Автоматизированное нанесение пленки Рис. 5. Установка нанесения пленки для производства частей самолета Airbus A380. С технологией автоматизированного нанесения пленки тесно связана технология формования намоткой волокон, при которой установка наматывает волокна углерода или другого армирующего материала на вращающийся стержень. Головка держателя волокна двигается туда и обратно в то время, как стержень вращается, так что пучки волокон наматываются единообразно. Как правило, волокна окунают в ванну со смолой непосредственно перед наматыванием, хотя без ванны можно обойтись, если использовать предварительную подготовку нити (непрерывную нить, предварительно пропитанную смолой). После вулканизации в автоклаве стержень удаляют. Формование намоткой нити в настоящее время используется для производства целых фюзеляжей реактивных самолетов на несколько пассажиров. Трансферное формование пластмасс (RTM) Рис. 6. Трансферное формование пластмасс используется для изготовления вертикального стабилизатора из углеродного/эпоксидного композита для нового служебного реактивного самолета Dassault Falcon 7X. Тогда как для RTM необходима форма состоящяя из двух половин, разновидность RTM, называемая транферное формование пластмасс с помощью вакуума (VARTM), позволяет производить детали для авиационно-космической промышленности на одной открытой форме. При использовании данной технологии предварительно отформованную заготовку помещают в одну половину формы, затем поверх формы надевается мешок, чтобы обеспечить герметичность. Когда в покрытой форме создается вакуум, смола засасывается в форму через впускное отверстие в заготовку, а затем окончательно отвердевает. Технология VARTM позволяет производить крупные детали, в которых практически нет дефектов. Эта технология также дешевле, чем RTM, поскольку используется только половина формы. VARTM изучалась одним подрядчиком (Lockheed Martin Space Systems) как один из способов снижения затрат на производство приборного отсека ракетного комплекса Trident II D5 путем интеграции состоящего из 61 части агрегата в единое целое. Производитель пришел к выводу, что новая технология сулит сокращение эксплуатационных затрат до 75%. Рис. 7. Установка трансферного формования пластмасс, управляемая компьютером. Вливание пленки на основе смолы Сочетание высоких топливных затрат и конкурентная борьба между авиакомпаниями стимулирует внедрение мер по сокращению затрат в авиационно-космической промышленности. Опорные конструкции из пластмассовых композитов, с их небольшой массой, высокой прочностью и устойчивостью к усталости и коррозии, позволяют авиакомпаниям экономить. Сложной задачей, стоящей перед производителями композитных материалов, является разработка технологий производства с более низкими затратами, которые сделали бы композиты конкурентоспособными по отношению к легким сплавам металлов и маталлокомпозитам, которые тоже участвуют в борьбе за ведущую роль в производстве будущих самолетов. Новые композитные технологии, которые исключают дорогостоящее автоклавное оборудование, представляют собой один из способов решения этой задачи отраслью, занимающейся переработкой пластмасс. | |||||||||||||||||||||||||
Гордон Грэфф, http://www.omnexus.com | |||||||||||||||||||||||||