ОБЗОР ТЕХНОЛОГИЙ ПРОИЗВОДСТВА АММИАЧНОЙ СЕЛИТРЫ |
В промышленности широко применяется только метод получения аммиачной селитры из синтетического аммиака и разбавленной азотной кислоты. |
Метод получения аммиачной селитры из аммиака коксового газа и разбавленной азотной кислоты перестали применять как экономически невыгодный. Технология производства аммиачной селитры включает в себя нейтрализацию азотной кислоты газообразным аммиаком с использованием теплоты реакции (145 кДж/моль) для упаривания раствора селитры. После образования раствора, обычно с концентрацией 83 %, лишняя вода выпаривается до состояния расплава, в котором содержание нитрата аммония составляет 95 — 99,5 % в зависимости от сорта готового продукта. Для использования в качестве удобрения расплав гранулируется в распылительных аппаратах, сушится, охлаждается и покрывается составами для предотвращения слёживания. Цвет гранул варьируется от белого до бесцветного. Нитрат аммония для применения в химии обычно обезвоживается, так как он очень гигроскопичен и процентное количество воды в нем (ω(H2O)) получить практически невозможно. На современных заводах, производящих практически неслеживающуюся аммиачную селитру, горячие гранулы, содержащие 0,4 % влаги и менее, охлаждаются в аппаратах с кипящим слоем. Охлажденные гранулы поступают на упаковку в полиэтиленовые или пятислойные бумажные битумированные мешки. Для придания гранулам большей прочности, обеспечивающей возможность бестарных перевозок, и сохранения стабильности кристаллической модификации при более длительном сроке хранения в аммиачную селитру вносят такие добавки, как магнезит, полуводный сульфат кальция, продукты разложении сульфатного сырья азотной кислотой и другие (обычно не более 0,5% по массе). В производстве аммиачной селитры используют азотную кислоту с концентрацией более 45% (45-58%), содержание окислов азота не должно превышать 0,1%. В производстве аммиачной селитры могут быть использованы также отходы аммиачного производства, например аммиачная вода и танковые и продувочные газы, отводимые из хранилищ жидкого аммиака и получаемые при продувках систем синтеза аммиака. Кроме того, в производстве аммиачной селитры используются также газы дистилляции с производства карбамида. При рациональном использовании выделяющегося тепла нейтрализации можно получить за счет испарения воды концентрированные растворы и даже плав аммиачной селитры. В соответствии с этим различают схемы с получением раствора аммиачной селитры с последующим выпариванием его (многостадийный процесс) и с получением плава (одностадийный или безупарочный процесс). Возможны следующие принципиально различные схемы получения аммиачной селитры с использованием тепла нейтрализации: - установки, работающие при атмосферном давлении (избыточное давление сокового пара 0,15-0,2 ат); - установки с вакуум-испарителем; - установки, работающие под давлением, с однократным использованием тепла сокового пара; - установки, работающие под давлением, с двукратным использованием тепла сокового пара (получение концентрированного плава). В промышленной практике нашли широкое применение как наиболее эффективные установки, работающие при атмосферном давлении, с использованием тепла нейтрализации и частично установки с вакуум-испарителем. Получение аммиачной селитры по этому методу состоит из следующих основных стадий: 1. получение раствора аммиачной селитры нейтрализацией азотной кислоты аммиаком; 2. выпаривание раствора аммиачной селитры до состояния плава; 3. кристаллизация соли из плава; 4. сушка и охлаждение соли; 5. упаковка. Процесс нейтрализации осуществляют в нейтрализаторе, позволяющем использовать тепло реакции для частичного выпаривания раствора – ИТН. Он предназначен для получения раствора аммиачной селитры путём нейтрализации 58 – 60 % азотной кислоты газообразным аммиаком с использованием тепла реакции для частичного выпаривания воды из раствора под атмосферным давлением по реакции: NH3 + HNO3 = NH4NO3 + Qккал |
Безопасность процесса нейтрализации обеспечивается автоматическими блокировками, прекращающими подачу сырья в аппараты ИТН при нарушениях соотношения расходов азотной кислоты и газообразного аммиака или при росте температуры в реакционной зоне выше 180 0С; в последнем случае в ИТН автоматически подаётся конденсат водяного пара. Подогреватель азотной кислоты предназначен для подогрева 58 – 60 % азотной кислоты от температуры, при которой он хранится на складе, до температуры 80 – 90 0С за счёт тепла сокового пара из аппарата ИТН. одогреватель газообразного аммиака предназначен для нагрева аммиака до 120 – 180 С. Донейтрализатор предназначен для донейтрализации аммиаком избыточной кислотности раствора аммиачной селитры, непрерывно поступающего из аппарата ИТН, и вводимых в качестве добавки серной и фосфорной кислот. Высококонцентрированный плав получают в выпарном аппарате в одну ступень под атмосферным давлением. Промывное и фильтрующее оборудование необходимо для отмывки пыли аммиачной селитры, уносимой воздухом из башни, аэрозольных частиц аммиачной селитры из паро-воздушной смеси выпарного аппарата, воздуха из башен, сокового пара из аппаратов ИТН, а также аммиака из этих потоков. Грануляционная башня она состоит из трёх частей: верхняя часть – с потолком и переходником к промывному скрубберу; средняя часть – собственно корпус; нижняя часть – с приёмным конусом. Продукт выгружается на реверсивный конвейер через прямоугольную щель в нижнем корпусе. Аппарат для охлаждения гранул в кипящем слое предназначен для охлаждения гранул выходящих из грануляционной башни от 110 – 120 до 40 – 45 0С. Под псевдоожижением понимается процесс перехода слоя зернистого материала в «текучее» состояние под действием потока ожижающего агента – воздуха. Если под слой гранул с определённой скоростью подавать воздух, гранулы начинают интенсивно перемещаться относительно друг друга и слой их намного увеличивается в объеме. По достижении определённой скорости наиболее мелкие гранулы начинают покидать границы слоя и уносятся потоком воздуха. Такое явление происходит, если давление потока воздуха превышает силу тяжести гранул. Сопротивление слоя материалов почти не зависит от скорости газа и равно весу материала, приходящегося на единицу площади. Кипящий слой гранул приобретает свойства, присущие капельной жидкости. Температура всего объёма кипящего слоя гранул, как и любой кипящей жидкости, практически одинакова. Современные крупнотоннажные агрегаты химических производств имеют ряд специфических особенностей, которые следует учитывать при разработке систем автоматизации таких объектов: - последовательная технологическая структура с жёсткими связями между отдельными стадиями процесса при отсутствии промежуточных ёмкостей; - большая производительность отдельных аппаратов, рассчитанная на полную - территориальная рассредоточенность рабочих мест аппаратчиков. Большая мощность и последовательная структура агрегата задают повышенные требования к надёжности контроля, регулирования и защиты, так как выход из строя отдельного элемента зачастую приводит к полной остановке агрегата и, как следствие, к большим экономическим потерям. Подробнее с текущей ситуацией и прогнозом развития российского рынка минеральных удобрений можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок минеральных удобрений в России». Об авторе: Академия Конъюнктуры Промышленных Рынков |