Методы получения алкидов с высоким содержанием твердого вещества (Часть 1)


В настоящей статье представляются новые возможные подходы к построению архитектуры алкидных полимеров, что необходимо для соответствия рыночным ограничениям, имеющим отношение к эмиссиям летучих органических соединений (ЛОС).


 

Представляются примеры и характеристики алкидных концептов по отношению к содержанию ЛОС, а также характеристикам «внутренней/внешней отделки и облицовочных красок для дерева и металла».

История
Технологии производства покрытий должны переходить на водные системы и системы с высоким содержанием твердых веществ вследствие появления новых норм, связанных с эмиссиями/содержанием ЛОС в покрытиях, а также растущими ценами.

В Директиве 2004/42/CE, изданной Европейским Парламентом и Советом Европы, устанавливаются ограничения по максимальному содержанию ЛОС в декоративных красках, используемых в пределах ЕС. Продукты, указанные в Директиве, используются в зданиях, отделке, арматуре и конструкциях, имеющих отношение к зданиям. В Директиве приводятся перечни особых подкатегорий с различными ограничениями по максимальному содержанию ЛОС в соотношении г/л готовых к использованию продуктов. Для каждой подкатегории приводятся два набора ограничений. Первый набор ограничений вступает в действие с 1 января 2007 года, а второй, более жесткий, - с 1 января 2010 года. Ограничения охватывают краски, основанные на растворителях и воде. Заданные уровни представлены в Таблице 1.

Одним из способов прийти в соответствие  с этими ограничениями, помимо дальнейшего развития водных систем, является возможность найти новые направления для технологий систем с высоким содержанием твердого вещества.

Таблица 1.

Подкатегория продуктов

ТехнологияСтадия 1 (г/л), с 1.1.2007Стадия 1 (г/л), с 1.1.20010
Внутренние матовые стены и потолки (блеск < 25@60o)

WB

SB

75

400

30

30
Внутренние глянцевые стены и потолки (блеск > 25@60o)

WB

SB

150

400

100

100
Внешние стены на минеральной подложкеWBSB75450

40

430
Внутренняя/внешняя отделка и облицовочные краски для дерева и металла

WB

SB

150

400

130

300
Лаки и протрава для древесины, в том числе непрозрачная протрава для древесины, для внутренней/внешней отделки

WB

SB

150

500

130

400
Внутренняя и внешняя протрава для древесины минимальной толщины

WB

SB

150

700

130

700
Грунтовка

WB

SB

50

450

30

350
Связывающая грунтовка

WB

SB

50

450

30

350
Однокомпонентные рабочие покрытия

WB

SB

140

600

140

500
Двухкомпонентные реактивные рабочие покрытия для особых зон, например полов

WB

SB

140

550

140

500
Многоцветные покрытия

WB

SB

150

400

100

100
Декоративные покрытия

WB

SB

300

500

200

200

WB = на воде, SB = на растворителе


Определения
Общего мнения по поводу определения, что такое системы с высоким содержанием твердого вещества, нет. Тем не менее, далее приводится некоторые из наиболее распространенных.
• Система обозначается как «содержащая большое количество твердого вещества», когда в ней содержится максимум 350 грамм ЛОС на литр покрытия.
• В Соединенных Штатах действуют различные нормы, например, максимум 420 г/л и максимум 250 г/л в зависимости от области применения и штата.
• Краска называется «содержащей большое количество твердого вещества», если в ней содержание ЛОС не превышает 420 г/л в условиях вязкости, характерной для сферы применения.
• Иногда выражение «высокое содержание твердого вещества» используется для всех видов красочных систем, в которых содержание нелетучих элементов превышает средний показатель. Это серьезное заблуждение, так как уровень содержания нелетучих соединений зависит от области применения и может быть различным.
• Покрытия с высоким содержанием твердого вещества обычно содержат более 60% (относительно веса) или 80% (относительно объема) твердого вещества.
• Лак с очень большим содержанием нелетучих соединений (>70%).

Таблица 2. Сравнение систем с высоким содержанием твердого вещества и традиционных систем

Системы с высоким содержанием твердого вещества

Традиционные системы
Физическая сушка слабая или отсутствуетИнтенсивная физическая сушка
Создание Тg при помощи поперечных связейТg готового покрытия представляет собой сумму Тg связующего вещества и поперечных связей

Особый метод получения систем с высоким содержанием твердого вещества
Для создания систем с высоким содержанием твердого вещества требуется уделять внимание выбору всех вовлеченных компонентов. Далее приводится перечень некоторых факторов, влияющих на выбор:
• Связующие вещества с высокой реакционной способностью;
• Связующие вещества с низкой вязкостью/низким молекулярным весом;
• Строение молекулы;
• Пигменты/наполнители с низким показателем масла;
• Смачивающие добавки; и
• Растворители, снижающие количество водородных связей.’

 
Рисунок 1. Стандартный процесс сушки алкидного связующего вещества

В Таблице 2 указывается сравнение систем с высоким содержанием твердого вещества и традиционных систем.

Алкиды относятся к полимерам типа В, которые демонстрируют высокую эффективность, но в целом обладают более низкой температурой стеклования. Показатель Tg и жесткость постепенно увеличиваются в течение процесса сушки.

В процессе окисления сложная часть заключается в том, что поперечные связи не образуются в результате реакции алкида с другим компонентом (химическим соединением, образующим поперечные связи), и последующего удаления функциональных групп, оказывающих пластифицирующий эффект. Это происходит в результате полимеризации двойных связей (результат действия жирных кислот). Таким образом, итоговый молекулярный вес меньше, чем у термопластичного полимера, а уровень формируемой жесткости не всегда соответствует ожиданиям. Феномен происходит тогда, когда воздух/кислород инициирует самоокисление альфа-положения из двойной связи к жирным кислотам во время сложного процесса радикальной полимеризации, которому способствуют металлические сушилки. Этот процесс приводит к образованию связи между жирными кислотами, связи которых могут представлять собой связи типа углерод-углерод, эфирную связь или пероксидную связь. Существует общее согласие по поводу того, что сушилки выполняют лишь вспомогательную функцию в процессе разложения гидропероксида, а также по поводу того, что более высокие температуры и жирные кислоты с сильными связями благоприятствуют формированию связей углерод-углерод.

Низкой вязкости можно достичь путем использования групп, способных действовать в качестве внедренных пластифицирующих компонентов. Однако, такой подход негативно воздействует на показатель Tg у алкида (физическая сушка) и может увеличить водочувствительность.

По существу, алкидное связующее вещество обладает диаграммой сушки, которая изображена на Рисунке 1. Алкид с высоким содержанием твердого вещества характеризуется более долгим периодом сушки вследствие очень низкого показателя Tg, который увеличивается при окислительной реакции, согласно Рисунку 2.

 

Рисунок 2. Процесс сушки связующего вещества с высоким содержанием твердого вещества


 
Рассматривая сам процесс сушки и определяя сушку как отображение вязкого поведения, согласно уравнению Уильямса-Ланделя-Ферри (Рисунок 3),  высыхание до уровня исчезновения отлипа при 25 ºC (температура измерения вязкости) можно получить в случае, если показатель Tg находится на уровне -29 ºC. Это должно соответствовать вязкости в 106 mPas (cP). При этом теоретический показатель Tg для покрытия, которое должно преодолевать устойчивость к слипанию при 25 ºC (температура измерения вязкости), должен находиться на уровне +4 ºC.3

 

Вязкость алкидного полимер представляет собой функцию возможности свободного объема. Свободный объем материала – это совокупность проемов или пустого пространства между молекулами материала, которые появляются в результате воздействия одного молекулярного сегмента на другой. Эти пустые пространства открываются и закрываются во время вибрации молекул. После превышения температуры стеклования (Tg) пустые пространства достаточно велики и существуют достаточно долгое время, чтобы молекулы или молекулярные сегменты перемещались в них, создавая тем самым низкую вязкость. Свободный объем увеличивается по мере роста температуры; степень увеличения объема выше при превышении Tg или при использовании растворителя. Поэтому главным вопросом становится решение проблемы практически отсутствующей физической сушки, необходимой в тех случаях, когда желательно наличие большего свободного объема, а также проблемы сохранения молекулярного веса на максимально высоком уровне!
   
Ответ может заключаться в архитектуре самого алкидного связующего вещества. В основном, это означает переход от низкого свободного объема к более высокому свободному объему (Рисунок 4), при этом содержание нелетучих соединений составляет почти 100%.


Рисунок 3  Уравнение Уильямса-Ланделя-Ферри


 
Если позволить алкидным связующим веществам иметь разумных молекулярный ве и в то же время защитить сегмент с разумно высоким показателем Tg, то увеличение жесткости будет передаваться покрытию во время процесса сушки. Защита необходима для того, чтобы обеспечить низкую вязкость. Сама архитектура должна позволять создание разумного свободного объема, что приведет к  разумному уровню вязкости в зоне применения, а условия будут соответствовать определениям систем с высоким содержанием твердого вещества.

 

Рисунок 4 Увеличение свободного объема и уменьшение вязкости


Быстрое решение этой проблемы можно найти при проектировании алкидного связующего вещества. Общеизвестно, что дентритовые структуры приводят к снижению вязкости, но и к развитию более слабой жесткости. Возможно, это происходит вследствие того факта, что ядро дендримеры должно быть мягким сегментом для того, чтобы обеспечить хорошую мобильность/реактивность для групп, предназначенных для построения последующих слоев.
 

Рисунок 5 Дентритовая структура

Рисунок 6 Дисковидная структура


Тем не менее, даже если ядро достаточно крепкое, что происходит в результате симметрии дендримеры и создания дендронов мягкими сегментами, то оно обладает настолько сильной защитой со стороны ответвлений, что физическая сушка почти не имеет значения.

Рассматривая дендритную структуру, изображенную на Рисунке 5, можно отметить, что сегмент ядра не отображается во время процесса сушка, чтобы продемонстрировать свойства физической сушки. Не удается постоянно измерять колебания мягкой оболочки молекулы. Поэтому молекула должна по возможности наиболее определенной формой, например, как на Рисунке 6, чтобы жесткое ядро молекулы можно было увидеть во время процесса сушки.

Поэтому алкидное связующее вещество следует выстраивать в виде дисковидной структуры (Рисунок 6), обеспечивая более высокую мобильность и ослабляя защиту жесткого ядра молекулы, которой можно придать форму по сырьевым материалам и длине в целях контроля Tg. Форма, отображенная на Рисунке 7, может очень хорошо подойти для выполнения этих требований. Ее легко синтезировать при помощи стандартных сырьевых материалов для алкидов, используя их полуфабрикаты, или при помощи подходящей последовательности наполнения и реакций.


Рисунок 7   Дендритные компоненты защищают жесткий сегмент
 

Если рассмотреть архитектуру, изображенную на Рисунке 7, то окажется, что молекулярный вес можно увеличить на дендритной стороне молекулы, пытаясь сохранить архитектуру, изображенную на Рисунке 8. Это можно осуществить путем проведения реакции дендритных компонентов, обладающих свойствами гидроксила и низким количеством ОН, на компонентах со свойствами ангидрида. Более подробное объяснение будет дано далее.


Рисунок 8  Дальнейшее ветвление на концептуальной конструкции ядра
 


Таким образом, сегмент, который необходимо защитить, можно получить из стандартных сырьевых материалов, таких как двухосновные кислоты и диолы, предпочтительно 1,3-диолы. Наиболее распространенный сегмент, обладающий Tg на уровне  +26 оC можно создать из фталевого ангидрида и неопентилгликоля, как это указано на Рисунке 9.
 

 

Рисунок 9.  Жесткий сегмент создан при помощи реакции неопентилгликоля с фталевым ангидридом
 

Данный сегмент получает дополнительную защиту со стороны сложных эфиров, входящих в состав растительных жирных кислот и высокоэффективных полиолов. Это приводит к появлению компонентов с низким Tg, которые обеспечат проведение окислительной сушки. Показатель Tg подобных компонентов ниже -32 ºC, в зависимости от того, какие используются кислоты.

На Рисунке 10 в качестве примера изображается строительный блок, основанный на дипентаэритритоле и жирных кислотах талового масла. Эти строительные блоки могут представлять собой сложные эфиры пентаэритритола, триметилолпропана, ди триметилолпропана и др.


Рисунок 10.  Дендритные компоненты со свойствами гидроксила и низким показателем ОН


 
Содержание масла в алкидах можно контролировать путем замены жирных кислот другими кислотами. Тем не менее, эти кислоты следует отбирать таким образом, чтобы они не влияли на желаемый уровень Tg у строительного блока. Поэтому не рекомендуется использовать бензойную кислоту, а использование аддукта дициклопентадиена с двухосновной кислотой (Рисунок 11) способствует сохранению Tg, ослабляя при этом подавление кислорода и ускоряя процесс сушки. Также не требуется уменьшение прокладки (см. выше), чтобы обеспечить защиту, аналогичную той, которую предоставляет жирная кислота (Рисунок 11).


 

Рисунок 11.  Аддукт дициклопентадиена с карбоксильными свойствами и двухосновная кислота


Содержание масла в структурах, изображенных на рисунке 10, связаны с длиной прокладки и свойственной ей Tg (см. выше) (Рисунок 9).

Рисунок 12. Компоненты жирной кислоты на дендритной структуре, модифицированные малеиновым ангидридом с целью дальнейшего увеличения молекулярного веса
 

Дальнейшее увеличение молекулярного веса, согласно архитектуре, изображенной на Рисунке 8, осуществляется путем проведения реакции между малеиновым ангидридом с компонентами жирной кислоты на дендритной структуре (см. Рисунок 10), а также последующей реакции указанных дендритных эфиров жирной кислоты с этими компонентами. Компоненты, полученные в результате реакции малеинового ангидрида с жирными кислотами, отображаются на Рисунке 12.


Рисунок 13. Диметиловая пропионовая кислота
 

Таким образом, появляется возможность значительно увеличить молекулярный вес, не оказывая серьезное воздействие на итоговую вязкость.

 


Андерс Клауссон, Мирсия Манеа, Кент Сёренсен