ГИДРОГЕЛИ И СУПЕРАБСОРБИРУЮЩИЕ ПОЛИМЕРЫ (часть III)


Рассмотренные в данной статье промышленные, фармацевтические, медицинские и высокотехнологичные области применения гидрогелей используют их уникальные свойства - гидрофильность, влагопоглощение, температура перехода… Они обеспечивают эффективность использования гидрогелей в производстве средств гидроразбухающей герметизации и прочих герметиков, мягких контактных линз, «умных» полимеров, матриц введения лекарственных препаратов…


 

Наряду с возможностью производства товаров массового потребления на основе суперабсорбирующих полимеров, универсальные гидрогели также открывают новые перспективы для разработки «умных» применений. Этому способствует  широкий диапазон химических структур, позволяющий по желанию разработчика контролировать скорость поглощения и ее интенсивность, что возможно в самых различных областях, таких как:
- гидроразбухающая герметизация для строительства и аналогичных применений;
- самогерметизация;
- устройства доставки лекарственных препаратов и других химических веществ;
- умные полимеры, реагирующие на различные стимулы;
- мягкие контактные линзы;
- гидрофильные покрытия.

Гидроразбухающая герметизация для гражданского строительства, строительства и аналогичных применений.
На протяжении почти что тридцати лет набухающие в воде каучуки использовались для прекращения доступа воды в гражданском строительстве и алогичных областях. За счет их способности к самогерметизации они используются в тех случаях, когда вода или водные растворы создают какие-либо проблемы, например, для защиты от затопления, проникновения жидкости или герметизации от протечек.

После контакта с водой профиль или герметизирующее средство набухают, сильно увеличиваясь в объеме и увеличивая путь для поступления воды, это действует как барьер для всякого возможного дальнейшего проникновения воды. Здесь могут быть, например, следующие применения:
- соединительные герметизирующие профили для строительных соединений, герметизация от проникновения в пространство между стеной и стеной, стеной и полом, полом и полом, которое соединяет новое строительство с уже имеющимся, герметизация предварительно отлитых бетонных дренажных труб и сборных бетонных колец колодцев, герметизация от проникновения входов труб, узлов коммунального обслуживания и т.д.

Ограничениями для применения могут быть: непригодность для использования в подвижных соединениях, при высоком давлении воды, при слишком быстром притоке воды из-за того, что профилю требуется определенное время для набухания. На приведенном ниже рисунке показан принцип работы герметизации от проникновения воды.


Рисунок 1: 'Принцип герметизации от проникновения воды'.

- Самогерметизирующиеся многослойные пленки и листы: слой гидроразбухающего материала между двумя слоями обычного водонепроницаемого листа может набухнуть и заклеить поврежденные участки композита. На приведенном ниже рисунке показан принцип самогерметизации.


 

Рисунок 2: 'Принцип самогерметизации'.

Существует два основных способа изготовления гидроразбухающей герметизации:
- смешивание эластомера и гидрогеля, например, полиакриловой кислоты и ее солей;
- полимеризация солей акриловой кислоты в эластомерной матрице. Считается, что этот метод позволяет получить лучшие механические свойства.

Гидрогели в большинстве случаев представляют собой полиакриловую кислоту и ее соли, но также используются и полиакриламид, гидроксиэтилметакрилат, карбоксиметилцеллюлоза, сополимер поливинилового спирта и полиакриловой кислоты.

Эластомером может быть натуральный каучук (NR), силикон, бутиловый каучук (IIR), хлорированный полиэтилен (CPE), хлорбутилкаучук (CIIR), EPDM, этил-винилацетатный сополимер (EVM) и прочие традиционные эластомеры и термопластические эластомеры. Так, например, компания Arkema предлагает две марки PEBAX, способные поглощать до 120% воды, компания Vita Thermoplastic Compounds (VTC) разработала компаунд, названный Vitaprene 50060, который при погружении в воду разбухает в несколько раз относительно своего первоначального объема.

Исследователи из Фраунхоферского института разработали ТРЕ, наполненный полиакрилатом, который зарегистрирован как Q-TE-C®. Здесь при контакте с водой происходит разбухание, в несколько раз превышающее объем в сухом состоянии.

Поскольку существует такое множество возможностей, набухание и механические свойства бывают необычайно разнообразны, но существуют некоторые общие правила, которые мы, не претендуя на то, чтобы считать их универсальными или исчерпывающими, приводим ниже:
- способность набухать повышается с повышением концентрации данного гидрогеля;
- поглощение солевых растворов значительно меньше поглощения воды;
- имеется гистерезис поведения при набухании, который никогда не восполняется до конца после предшествующих набуханий или высушиваний;
- способность набухать уменьшается по мере того, как степень сшивания увеличивается, но, обычно, точно также улучшаются и механические свойства;
- механические свойства зависят от совместимости эластомера и используемого гидрогеля. Гидрогель может действовать как инертный наполнитель, ухудшающий механические эксплуатационные характеристики, или же, как армирующий наполнитель, который улучшает механические свойства;
- набухание оказывает решающее воздействие на механические свойства.


Таблица 1. Примеры свойств набухания и механической прочности на разрыв для различных гидроразбухающих ТРЕ при различных условиях.

Свойство

СиликонНатуральный каучукEVMCPE
Гидрогель, % 10-50 20-50 10-50 20-50
Набухание в воде, % До 1200 60-8060-25050-200
Набухание в соленой или кислой воде, % До 350  20-10040-90
Прочность на разрыв, сухой, МПа 1-4 10-1812-28 
Прочность на разрыв, набухший, МПа 0.2-0.4 5-10   
Прочность на разрыв, вновь высушенный, МПа  7-13  
Относительное удлинение при разрыве, сухой, % 340   
Относительное удлинение при разрыве, набухший, %120   

Отсутствие точного определения понятия гидрогеля и общей рецептуры не позволяет осуществить прямое сопоставление между основными эластомерами

Применения, для которых нужны специально отрегулированные параметры поглощения: задумаемся о сшитых полиакриламидах
Исследуется набухание и механические свойства гидрогелей из N-изопропилакриламида (NIPA), сшитого в наполовину переплетающихся сетях с метиленбисакриламидом в присутствии линейного полиакриламида.

На приведенном ниже рисунке 'Свойства в зависимости от сшивания' показаны относительное удлинение при разрыве (EB), прочность на разрыв (TS) и набухание для пяти состояний сшивания, которые обозначены как наивысшее X, высокое X, среднее X, низкое X и самое низкое X. Очевидно, что:
- относительное удлинение при разрыве быстро уменьшается при увеличении степени сшивания. Исходное относительное удлинение при разрыве округленно поделено по десять;
- прочность на разрыв постепенно возрастает до 50%;
- набухание существенно уменьшается.


Рисунок 3: Свойства в зависимости от сшивания.

Модуль (который не представлен на предыдущем графике) составляет для самой высокой степени сшивания значение, которое в четыре раза превышает значение модуля для образца с самой низкой степенью сшивания.

По сравнению с рассмотренными ранее суперабсорбирующими материалами, степень набухания в 50 – 100 раз ниже.

Мягкие контактные линзы
Впервые мягкие контактные линзы были успешно изготовлены из гидрофильных гелей и запущены в промышленное производство в пятидесятых годах. После довольно сложного начального периода с производством 5,500 пар мягких контактных линз в 1961 г и 100,000 пар в 1971 г. этот сектор хорошо развивается, занимая существенную долю общего рынка контактных линз наряду с традиционными твердыми линзами.

Мягкие контактные линзы часто изготавливают из полигидроксиэтилметакрилата (pHEMA), который погружают в воду или соляной раствор для придания гелю формы, которая сохранит нужную геометрию и оптические функции. Производители линз постоянно совершенствуют материалы для их изготовления, что приводит к созданию множества вариантов гидрогелей.

Существует несколько технологий для производства мягких контактных линз, но наиболее надежной технологией массового производства является, возможно, литьевое формование. Наиболее усовершенствованный вариант технологии высоко автоматизирован и контролируется с помощью компьютеров, что позволяет исключить дополнительные операции после механической обработки. После того, как линзы прошли контроль, их стерилизуют, кипятят в соленой воде для формирования гидрогеля и хранят в соляном растворе, который аналогичен человеческим слезам.

Одной из проблем, возникающих с контактными линзами, является оксигенация глаза. У силоксанов высокая проницаемость, но из-за их жесткости получаются неудобные линзы. У силоксанов или силоксановых гидрогелей высокая проницаемость для кислорода и низкая жесткость, что может позволить решить обе проблемы, но полимеризация гидрофильных мономеров с силиконовыми мономерами осуществляется с трудом, и часто образуются непрозрачные полимеры. Тем не менее, при тщательном отборе мономеров можно обнаружить некоторые зоны совместимости.

В мягких силоксановых гидрогелях сочетание мономеров регулируется для того, чтобы контролировать забор воды в диапазоне от 20% до 60%, а также для того, чтобы оптимизировать проницаемость для кислорода. На приведенном ниже рисунке 'Состав и свойства' в схематичном виде изображены узкие границы между различными рецептурами и точным балансом свойств силоксановых гидрогелей. При необходимости можно осуществлять поверхностную обработку линз, если они не смачиваются надлежащим образом, или на них образуются отложения.


 

 

Рисунок 4: Состав и свойства.

Умные полимеры, реагирующие на специальные стимулы: устройства доставки лекарственных препаратов и других химических веществ
На приведенном ниже рисунке показан в виде диаграммы принцип действия умных полимеров, реагирующих на специальные стимулы. Реализация небольшого изменения ограничения или стимула, такого, как температура, водородный показатель, гигрометрия, свет и т. д. приводит в действие механизм перехода, в результате которого происходит резкое изменение одного или нескольких свойств, например, разрушение гидрогеля, выпуск абсорбированного химического вещества (лекарственного препарата, аромата)…

Изменение свойства может носить характер резкого усиления или резкого уменьшения в зависимости от рассматриваемых параметров.
 

 

Рисунок 5: 'Материалы, реагирующие на определенные стимулы'.

Полимеры, обладающие обратимым фазовым переходом, могут представлять интерес для использования в качестве систем доставки лекарственных препаратов для применения в медицинской промышленности и в области биотехнологий. Макроскопические, микроскопические и наноскопические гидрогелевые трехмерные сети с такой моделью фазового перехода могут реагировать на стимул изменений внешней температуры и характеризуются критической температурой растворения (CST).

Помимо хорошо известного поли(N-изопропилакриламида), интерес могут представлять и другие производные, такие как: поли(N,N'-диэтидакриламид), поли(N-этил,N-метилакриламид) и поли(N-пирролидинакриламид). Кроме этого можно управлять переходами из одной фазы в другую, степенью набухания, кинетикой повторного набухания и исчезновения набухания и критической температурой растворения также и с помощью:
- манипулирования условиями полимеризации;
- использования различных веществ для сшивания;
- изменений степени сшивания;
- оптимизации трехмерной сети с созданием макро-, микро-, и наноразмерных структур;
- сополимеризации с другим полимером с другой моделью поведения;
- добавления солей или растворителей.

Гидрофильные покрытия
Гидрогельные покрытия на основе поливинилпирролидона (PVP), такие как LubriLAST™ от AST Products, могут обеспечивать смазывание и гидрофильность для целого ряда инвазивных и экстракорпоральных медицинских систем.

Это гибкая технология, способная использовать различные биологически активные ингредиенты, такие как противомикробные вещества, антикоагулянты и фармацевтические препараты с контролируемым введением действующего вещества. Состав (полностью на водяной основе) наносится с использованием простой и надежной технологии нанесения покрытий с помощью погружения на все обычно используемые биоматериалы самого различного вида, такие как: полимеры, металлы, керамика.

В результате обеспечиваются исключительная способность к скольжению, биологическая совместимость и долговечность. В число целевых применений входят: катетеры, проволочные направители для катетеров, а также самые разнообразные хирургические инструменты и диагностические устройства.

Исследуется привитая сополимеризация слоев гидрогеля полиакриловой кислоты за счет тонкого макроинициирующего слоя для снижения трения полимерных катетеров, изготовленных из полиамида 12 (PA12) или полиэфирэфирамида (PEBAX). Значительное падение значений коэффициента трения может достигать, например: с 0.37 для чистого PA12 или 0.65 для PEBAX до 0.03 и 0.044 для тех же материалов после нанесения покрытия. Зафиксированный слой гидрогеля полиакриловой кислоты может быть всего несколько микронов в толщину.

Такие гидрофильные покрытия, как полиакриловая кислота, полиэтиленгликоль, поливинилпирролидон (PVP), сополимер этилена и ангидрида малеиновой кислоты, полигидроксиэтилметакрилат (POLYHEMA) и другие также могут быть связаны в полиэтилен (PE), полиэтилентерефталат (PET), политетрафторэтилен (PTFE), или PA12 с помощью плазменной обработки или обработки электронным лучом.

В зависимости от типа гидрогеля и степени сшивания степень набухания может увеличиваться с 30 до 600%.

Для того, чтобы производить гидрогели, которые можно использовать для умных применений, необходимо:
- Использовать специальные химические структуры, в которых много полярных групп, на основе, например, полиакриловой кислоты и ее солей, полиакриламида, гидроксиэтилметакрилата, карбоксиметилцеллюлозы, сополимера поливинилового спирта и полиакриловой кислоты.

- Осуществить их сшивание до той степени, которая необходима для получения точного соотношения абсорбции, механической прочности и прочих специальных функциональных свойств, таких как прозрачность для производства мягких контактных линз, температура перехода для умных полимеров и систем доставки лекарственных препаратов и т.д.

Рассмотренные в данной статье промышленные, фармацевтические, медицинские и высокотехнологичные применения используют преимущества гидрофильности, влагопоглощения и температур перехода гидрогелей для производства средств гидроразбухающей герметизации и прочих герметизирующих материалов, мягких контактных линз, умных полимеров, матриц введения лекарственных препаратов…и многих других.

Майкл Байрон,
http://www.specialchem4polymers.com